Tools Part IV: Small Power Tools

I’m going to split power tools into two general groups, hand held power tools, and the big expensive ones like table saws. I’ll deal with the big ones in the next installment of this.

The goal of this whole series is to help you avoid making the mistakes I made, some of which have been pretty darned expensive. Far too often I’ve ended up paying big bucks for an overhyped, high end tool when a medium priced tool or even a cheap one would have worked just as well. Or even worse, I spent a lot of money on speciality tools I only used once. So hopefully this will help you avoid the mistakes I’ve made. And I’ve made a lot of them when it comes to small power tools. I never should have bought that battery powered DeWalt circular saw, for example. I never should have spent that much money on a reciprocating saw… Well, you’ll see as you read along.

DC Vs. AC – Corded or Battery?

Some of the tools I’m going to be talking about in this section are available either as battery operated, or AC versions which have to be plugged in. So which is better? Unfortunately the answer is, it depends. It depends on how much you are going to use the tool, what the tool does, etc. For some of these tools, the battery versions are so ridiculously expensive that buying one is just silly. For others, the battery versions are so much weaker and less capable that again buying one would be silly. For others it’s a coin toss as to which is better.

Buy separately or buy a kit/collection?

A lot of tool makers will gladly sell you a whole bag full of their stuff, and regularly push these collections as “deals”. DeWalt, for example, will gladly sell you a kit that includes a drill, reciprocating saw, circular saw, flashlight, even a radio, that all work off the same battery system. So will other tool makers like Milwaukee. But while they make it sound like this is a good deal, it usually isn’t. Generally you end up paying just as much for those tools as if you’d bought them separately. And often you’ll end up paying for tools you will seldom, if ever, actually use. If the collection is indeed made up only of tools you will actually use, and they aren’t overcharging you for them, then sure, go for it. But that radio? You’ll probably never use it. And that circular saw? I hate to say this but most battery operated circular saws aren’t very good, even the brand name ones. But I’ll come to that a bit later. Let’s talk about drills first of all.


Electric drills are an essential tool for any handyperson, hobbyist, woodworker or even someone who just putters around in the garage occasionally. Drills have become a utility tool, used not just for drilling holes, but for driving and removing screws and bolts, polishing, sanding, etc. I honestly can’t remember the last time I used a regular screwdriver. I grab my battery operated drill with a screwdriver bit it chucked into it. Of all the power tools in the shop or the garage, the drill is the one that is probably going to be used the most often.

Generally speaking the argument of DC Vs. AC with electric drills was over long ago, and batteries won hands down. Oh, you can still buy corded drills, really good ones. And they’re generally less expensive than the battery powered versions. But battery operated drills have become so efficient, so good, and so damned convenient to use, that the only AC powered drills I have are specialty items like hammer drills or drywall screwguns. The drill I use just about everyday is the one over there on the left, a DeWalt that runs on a 20V LI battery system that is shared with several other DeWalt tools I own.

Sidenote: A brief word about drill size, i.e. how big a drill you can chuck into the chuck. Most hobbyist and handyman type drills are 3/8 inch, which is generally fine. I prefer one that has a half inch capacity, but I’m probably tougher on drills than you are and need larger capacity than you do. You can get bigger drill bits with smaller shanks that will fit a 3/8″ drill, of course, but I think the 1/2″ capacity drills are better all the way around. The motors in the bigger ones are generally stronger and the whole drill is more heavy duty. The drawback is money, of course. 1/2″ drills are going to be more expensive. But for the average home owner, hobbyist and even woodworker, the smaller sized drill will probably work just fine.

What Does A Drill Need?

Any drill, whether corded or battery powered, should have should have all of these features.

1 – Reversible – you should be able to reverse the direction of the drill with the flip of a switch. Why? Because in all likelihood you’re going to use that drill not just for drilling holes but for driving or removing screws, tightening or removing bolts, etc. and being reversible is absolutely necessary.

2 – Keyless chuck. The chuck is the part of the drill that accepts the drill bit or screwdriver bit, etc. Once upon a time we had to use a chuck key, that thing over there on the left, to tighten up the chuck to hold the bit or whatever in place. The gear on the key matched a gear on the chuck, and you twisted it to tighten it up. And everyone had trouble keeping track of the damned chuck key. They were always getting lost. Or the gears would get stripped. Or you could never get it tight. You get the idea. They were a royal pain in the neck. Keyless chucks let you clamp down on a drill bit or whatever by just twisting a collar around the chuck by hand. Best invention to hit the drill market since, well, rechargeable battery packs, really.

3 – Variable speed. The speed of the drill should increase as you increase pressure on the trigger, and decrease as you let up on the trigger. Some cheaper drills come with just a fast/slow or hi/lo switch. That’s okay but it isn’t a real replacement for a variable speed trigger. Why do you need it? Because drilling different materials requires different speeds. And you don’t want that drill immediately jumping to a gazillion RPM as soon as you hit the trigger when you’re trying to drive a screw into a board.

4 – A clutch. A clutch is a device that limits the amount of torque, or force, that the drill applies. This allows you to set the drill so it will stop turning when it has to apply more force than you want. This makes it a lot easier to drive screws, use it as a nut driver, etc. You set the clutch, and when it gets the bolt or screw tight, it stops turning before it strips out the screw or twists your wrist off. It should be adjustable so you can set it where even gentle resistance will trip the clutch, all the way up to full torque.

Those four things are absolute musts. There are other features that are nice to have but not absolutely necessary. A built in light so you can see what you’re doing is nice to have. So is a built in bubble level so you can make sure you are drilling level and plumb.

As I said before, that drill in that photo up there is the one I use almost every day, and it’s proven itself to be pretty darned tough and has been able to handle everything I’ve thrown at it. It’s been dropped, kicked, slid across floors and otherwise beaten and abused, and has handled everything it has needed to. I don’t think it’s over priced, either, even though there are cheaper ones out there that are almost as good. Without a battery it’s going for about $80 on Amazon. And it also works off the same battery packs my little circular saw, sawzall, string trimmer and leaf blower use. Yes, all my battery operated tools are DeWalt. I’m not a DeWalt fanboy and I certainly don’t get any kind of reimbursement. But I do like that DeWalt drill a lot and think it’s well worth the money. And just to prove I’m relatively unbiased, I’m about to badmouth DeWalt’s battery operated circular saw in a moment here.

I’m not telling you to run out and buy one like mine. There are a lot of drills on the market that do everything this one does, and do it just as well, and are even cheaper. And when it comes right down to it, well, a drill is a drill, right? If all you need to do is drill a few holes and drive a few screws, a cheap 3/8″ drill off the shelf from Walmart is going to do it. As long as it has the necessary features and seems to be made reasonably well, go for it. The DeWalt is a good choice, but you can also get good drills from Milwaukee, Skil, Black & Decker and a dozen other brands, and almost all of them are going to do the job.

Circular Saws

I own this one. I wish I didn’t. You don’t want a battery operated circular saw. Seriously.

Circular saws like the battery operated one of mine over there on the right are pretty much ubiquitous. Just about everyone who has ever needed to cut a piece of wood has one and, well, why not? They’re handy, they’re cheap (or should be), and not too difficult to use. If you need to whack six inches off a 2X4 or cut a board in half, chances are good you’re going to reach for a circular saw.

But then I realized I haven’t used my circular saw is something like two years. Seriously. When I wanted to take a photo of my saw for this, it took me twenty minutes just to find the dopey thing. But that doesn’t mean you don’t need one. I don’t generally use one because I have alternatives like a table saw, power miter saw and stuff like that laying around the shop. For lopping off the occasional 2X4, cutting down a sheet of plywood or something like that, there really isn’t any alternative.

This is one of those cases where basically a saw is a saw is a saw. There is little or no difference between brands. Sure, the more expensive ones will be of a bit better quality and will probably last longer, but generally this is a case where a $50 saw is going to serve the average person just as well as a $150 one will. Seriously.

And this is a situation where you do not want a battery operated tool. Battery operated circular saws are almost universally underpowered, have less cutting capacity, usually, and generally can’t stand up to the same kind of heavy use (and abuse) that even the medium priced corded versions can deal with. And you end up paying two or three times as much for a decent battery powered saw as you’d pay for a corded one. I have a 20 year old Skil circular saw laying around somewhere that has more power, bigger capacity and is easier to use than that $120 battery powered DeWalt that I own in that photo up there. And I paid a whopping $40 for the Skil brand saw. So for three times the money I got a saw with less power, less cutting capacity, and a battery that lasts a woefully inadequate amount of time? Oh, brother…

That isn’t DeWalt’s fault, of course. To be fair the saw itself isn’t bad. It’s about average or even a bit above average quality for it’s price. But almost all battery operated circular saws just aren’t very good. It’s basic physics. Cutting wood takes a lot of energy and a motor with a lot of torque. A DC motor and battery pack that is light enough to be easily handled by the average person just doesn’t have the torque or the energy storage capacity. So almost all battery operated circular saws are under powered, can’t cut material as thick, and the batteries discharge astonishingly fast. Stick with the AC ones.

What about features you should look for? Uh, well, okay, how about one that cuts wood? Seriously, that’s really all you need to be concerned with. Oh, and is it well built enough that it isn’t dangerous to use. And that’s about it. When it comes to circular saws, the bells and whistles on the high end models aren’t worth the money. You can drop $300, believe it or not, on a high end circular saw, and in the long run it doesn’t do anything that a $50 Black & Decker or Skil does.

There is one upgrade that will make just about any circular saw, especially the cheap ones, work even better, and that’s a better blade. A lot of these cheaper saws come with blades that are a joke, little more than a piece of stamped sheet metal. For about $20 or or a bit more, you can get a carbide toothed blade that will cut better and last much, much longer. Frued makes excellent circular saw blades (and blades for miter saws and table saws). About the only good thing about my DeWalt battery saw is that it comes out of the box with a decent blade.


Routers can easily turn into the proverbial money pit, to be honest. We’re talking some serious cash here. Almost every hobbyist woodworker I talk to thinks they need a router. And when I ask them what they actually use it for, they either lie and tell me they use it all the time, or admit they’ve used it maybe twice since they bought it and it’s been gathering dust on the shelf ever since.

Okay, so what the heck is a router and do you need one?

My 890 Porter Cable must be well over 10 years old now and it’s still purring along like brand new

A router is sort of like a combination high speed drill and plane built into one. It spins at up to 28,000 RPM or so, turning a bit that has cutter blades shaped in various profiles.You use ’em to make decorative moldings, putting edges on table tops and panels, rounding over edges of boards, to cut complex shapes, and the list goes on and on. Basically they’re used for for shaping and adding decorative elements. You can get jigs and templates that will let you do things like make dovetails and other speciality joints.

That’s my Porter Cable up there in that picture, and as you can see from how dirty it is, it gets a lot of use. It’s an old 890 series router, with an optional plunge base, 1/4 and 1/2 inch collets (the thing that holds the bits), variable speed, soft start, and I dropped a considerable amount of money on it. I’ve had it for – well, must be more than ten years now, and it’s still going strong. It was not cheap. They don’t make this particular model any more but it looks like models comparable to this one are going for well over $200, probably closer to $300, and that’s without a plunge base, bits and accessories. When I add everything up I probably have close to $1,000 sunk into just this one tool system. See what I mean about a money pit?

But do you really need one? I could use a router to cut a sheet of plywood. But I don’t. I use a saw for that. I could use it to round off sharp corners on a table top. But I generally don’t. I’d use my little block plane for that. There are a lot of things a router could be used for, but it’s generally easier using a different tool for the job. What they are good for is mostly decorative things like moldings, making dovetail joints with a jig and things like that. So unless you make fine furniture or are making custom moldings for a window or picture frame or something like that as I do, you probably don’t need one.

Power Sanders

These are one of the greatest inventions ever, in my opinion. Anyone who has ever had to sand a 3′ by 6′ table top by hand before finishing it will tell you the same. I have four of them laying around at the moment, but I only use three. The one on the left, the square one, does work but it doesn’t have any kind of dust collection system so it sits on the shelf. The other three get used regularly, though.

Most orbital sanders have holes in the pad to match holes in the sanding discs. This is help with dust control. Most of them have some kind of dust collection system that, in theory, sucks up the dust through the holes and shoves it into a bag or some kind of filter. Sometimes it actually works. Maybe. Sort of. Kinda.

Despite the variety of sanders in that photo, IMO the only one you really need is an orbital sander like that Bosch up there. That’s really my workhorse sander. It uses sanding disks that attach with a hook and loop system, has holes in the disk that match holes in the sanding disks that permit it to suck up a lot, but not all, of the dust generated from sanding, and does a pretty good job of smoothing wood down. Discs are available in a wide variety of grades ranging from very coarse to very fine.

Prices bounce all over the place, but dear lord don’t spend a lot on one of these! I’ve seen prices pushing $200 for a sander that doesn’t do any more than a $40 Skill or Black & Decker.

Belt sanders like the Skil can be useful. Generally I use mine for hogging off large amounts of material with a coarse belt on it. Works well for fitting doors that stick, for example. But it gets used nowhere near as much as the orbital.

The “Mouse” is the red one with the point from Black & Decker and generally only used for finish sanding into tight corners. It’s handy, but do you really need one? Probably not. It also has no dust collection system on it so it gets messy real fast.

Generally speaking power sanders are reasonably cheap and can save you a lot of time. If you’re building furniture or doing any kind of finish carpentry, you probably need one.

Reciprocating Saw

Okay, here we go again – Yes, don’t buy this one either! I way, way over spent on this saw. I was, I suspect, drunk when I bought it. I could have got one for almost half the price that would work just as well.

Sometimes called a “sawzall” these things have pretty much replaced things like hacksaws, pipe cutters and the like for a lot of us. I wouldn’t technically call it a woodworking tool, but damn, the thing is handy. I’ve worn out three of these over the years. This DeWalt is the latest to move into the workshop. I use it for cutting pipe, trimming branches, sawing off bolts, well, you get the idea. You can get different saw blades suitable for everything from cutting steel, to wood, to demolition work.

Do you need one? Well, maybe? They’re certainly handy to have around. If you do buy one, don’t buy one like mine!!! I almost put this one in the “Holy Cow Did I Screw Up With This One” category because that puppy up there would set you back over $170. Dear lord, did I really spend that much on a saw? What the hell was the matter with me? Was I drunk? Temporarily insane?

No, no, no, no… If you decide you need a reciprocating saw, don’t spend more than $100 on one. This isn’t rocket science. All the thing does is move a blade back and forth for heaven’s sake. $170? Really? What the hell was I thinking? If I needed to stick with DeWalt they make one for $100 that would have worked just as well.


This is the last one I’m going to cover in this segment. I’m not going to go into a lot of detail about nailers, but damn, they’re handy, so I’ll touch on them briefly.

Now if you’ve ever hammered a nail in and, after smashing several fingers, bending a half dozen nails over and hammering the heck out of your wood, you’ve told yourself there has to be a better way of doing this. There is. Nail guns. Now there are electric ones and pneumatic ones (air powered). Generally speaking the electric ones are, well, frankly every electric one I’ve tried has been crap. I’m sorry, but they were. I stick with pneumatic.

I have three. One is a finish nailer for finish nails (duh), one is a pinner, a special type of nailer that uses headless nails called pins. They don’t have much structural strength and are generally used for holding together glue joints in furniture until the glue cures. I also have a big framing nailer for, well, framing (also duh).

Do you need one? Well, not really, to be honest. They certainly do make life a lot easier if you’re remodeling a house or putting up trim and stuff like that. But you can get along without one. They aren’t all that expensive, though. Well, unless you add in the cost of the air compressor you’ll need to power them. And you can generally rent them, along with an air compressor, at tool rental places so if you only need one for a short time for a special project like remodeling a room, you don’t need to buy the thing.

Specialty Tools, Or, Holy Cow Did I Screw Up With This One

I make mistakes. A lot of them. Over the years I’ve bought a lot of tools I wish I hadn’t. For whatever reason, buying xxxxx seemed like a good idea at the time, or I bought into the hype and advertising or whatever. And now I’ve ended up with a tool that spends its life collecting dust and providing a home for spiders. Here are a couple of examples.

My biscuit joiner. What the hell is that? Well, back in the good old days when “This Old House” was an actual home improvement show that showed you how to actually do stuff instead of what it is today, which is apparently an advertising platform for whatever company gives them free stuff or coughs up a few bucks, the biscuit joiner was the tool to have if you were making tables or panels according to their in-house carpenter, Norm. And I was gluing up a lot of boards to make panels for wardrobes and tables and said, wow, this is something I have to have. I mean, if Norm says I have to have one, well, I do. Right? Spoiler warning: I didn’t.

The tool is basically a special purpose saw that does only one thing, cut matching slots in two boards that accept those wooden biscuits you see in the lower left corner of the case. Cut the slots in the edge of the boards, slop on some glue, slip in the biscuits, shove the boards together, and it makes a strong, secure joint that is better than just merely gluing the two boards together.

Only it is utterly useless. Yes, it will indeed let you cut matching slots for the biscuits and all that. But it doesn’t matter. If you know what you’re doing that joint isn’t going to fail whether you have those biscuits in there or not. As I mentioned in a previous post, I have never had a glue joint fail if the joint was properly prepared, and I used a good quality glue and properly clamped everything while the glue cured. Never. I’ve had the wood fail alongside of a glue joint. But the joint itself? No. That includes edge glued boards. So why the heck do I need a biscuit joiner? I don’t. I used it twice, realized it was a complete waste of time, shoved it back on the shelf and there it’s sat for the last, oh, decade or so. I don’t remember what I paid for that thing, but I might as well have just flushed the money down the toilet.

I do know what I paid for this thing up there because the price tag is still on it, $199.99. And once again it was money not well spent. I bought it because I was refurbishing hardwood floors at the time and thought it would be really useful. It wasn’t. I did use the saw attachment to cut out boards that needed to be replaced, but I could have used tools I already had for that. The other functions like sanding, scraping and all that which are listed on the front of the box? It would do that, yes, but very, very badly. (Handy hint: the phrase “As Seen On TV” actually means “Totally Useless”. If it appears anywhere on the box or in the advertising for a product, don’t buy it. Just don’t.)

The thing about speciality tools in general is that they usually don’t work very well, and they almost never work as well in real life as they do in the advertising. I have a tenon jig for a table saw that works, but takes so much time to properly set up that by the time I have it ready to go I could have cut the tenon by hand faster. I have sharpening gadgets that either don’t work at all or actually make tools more dull than they were to begin with.

Well, you get the idea.

That’s it for now.

Tools Part II: Hand Tools For Cutting and Keeping Them Sharp

Making just about anything out of wood means that you are going to need to cut the wood into the correct size and shape for it to be useful. For centuries the only tools carpenters had for cutting and shaping wood were hand saws, wood chisels, and hand planes. And those three hand tools are still essential today. While I use power tools whenever I possibly can (I may be crazy but I’m not stupid) I still use good old fashioned hand versions of those tools all the time.

I’m going to keep this as simple and cheap. You can spend thousands of dollars on hand tools, a lot of them speciality items that you’re probably never going to use or will use only rarely. What you really only need is one saw, three different size chisels, and one or maybe two hand planes. All of the ones I’m going to recommend are reasonably cheap, except for the one hand plane, and you can probably get along nicely without the expensive one. Yes, I have a lot of speciality tools, and I have some tools that are pretty damned pricey, but when it comes down to it the ones I use most often and couldn’t live without are these few.


Note how the teeth are bent out from the blade. This creates the kerf. Both the bend angle and the grind angle determine if the saw is a rip saw or a cross cut saw.

Saws are a basic tool that have been around since at least the time of the ancient Egyptians. They have evolved a lot over the years but it is basically a metal blade with a series of teeth cut into the edge. The teeth are set at a specific angle and ground in a specific way so they not only cut wood, but also drag the cut wood out of the kerf (the slot left by a saw as it cuts through wood). Without the teeth being set and ground properly, the saw would become jammed in the kerf. The set of the teeth (how far out from the blade of the saw they extend) determines how wide the kerf will be. How the teeth are set and ground also determines if the saw is for ripping or cross cutting. A rip saw is designed to cut with the direction of the grain, while a crosscut saw cuts across the grain. Don’t worry about that, though. You don’t need to have two types of hand saws. I certainly don’t. If I have to rip a board lengthwise I’m going to use my table saw or a circular saw with a guide, not a hand saw. Trying to rip a board down the middle with a hand saw is not something most people want to do. But I will grab a hand saw to whack off five inches of a 2X4 that’s too long rather than go trying to find where I left my circular saw.

So you’re ready to get a handsaw, you run down to the local hardware store, and you grab one of these over there in the photo on the right because, well, it’s a saw, right? A good old fashioned more or less generic Stanley saw. And it will work. Not very well, but it will work. But all things considered, a saw like this will probably work reasonably well for you.

But there is a problem with that saw. The same problem shared by all western style saws. As I said, they don’t work very well.

The problem with western style saws is that they cut on the push stroke. Think about that for a minute. You’re wielding a tool made of a thin, floppy piece of metal, and trying to push it through a piece of wood. What happens? If the saw binds in the kerf or if you move the handle of the saw just a tiny bit left or right while pushing, the saw binds up, comes to an abrupt stop, and the metal blade bends. If you’re lucky that’s all that happens and when you pull back the blade will straighten. If you’re not lucky, you now have a permanently bent saw. This is not a good thing.

Then I discovered Japanese style saws a few years ago and the only thing I use my western style saws for these days is hanging on the wall and serving as a home for spiders. The Japanese saws are simple, elegant, razor sharp, cut on the pull stroke, and generally are so much easier and nicer to use that I haven’t touched one of my western style saws since.

My favorite is from a Japanese maker called Suizan. This one is has a blade a bit less than 10 inches long, has coarse teeth on one side and fine on the other, is razor sharp. It is my all around utility saw here in the shop and the one I use almost all the time. It is a joy to use. It’s not that expensive, either, about $39, and the blade alone can be bought for about $20. Can you get them resharpened when they start to dull? You probably could, but at only $20 for a replacement blade I suspect that having one resharpened would cost more than buying a replacement. Just chuck the old one in recycling and bolt on a new one.

Speciality Saws

Dovetail saw. The only thing I’ll say about it is that you don’t need one, and if you do need one, don’t buy this one because it’s a piece of junk.

I’m going to mention these saws even though you most likely aren’t going to need any of them. At least not unless you’re a really, really high end carpenter turning out very detailed, complex projects. If you’ve done any research at all about woodworking you already know that there are a lot of speciality saws out there like tenon saws, dovetail saws, “gentleman’s” saws, back saws and I don’t know what all else. What about those? Just pretend they don’t exist. Seriously. Oh, they have their place. If, that is, you’re working someplace like Colonial Williamsburg where you have to abandon modern technology and are trying to recreate the past. In the real world, the one you and I live in, no, you don’t need ’em. Do you know when I last cut a dovetail by hand? Maybe twenty years ago just to see if I could do it. If I have to cut dovetails for a joint I use a jig and a router. And as for the other speciality saws? Don’t need ’em. Look, I build full sized wardrobes, cabinets, boxes, chests, make my own hardwood panels for tables, build bookcases, tables, arts and crafts furniture, have made hundreds of mortise and tenon joint and all that fun stuff, and I have never needed one of those speciality hand saws.


So, why do you need chisels? See that chair over there on the left? That’s one of mine. There isn’t a single screw or nail in that chair. It’s put together entirely with mortise and tenon joints. A lot of mortise and tenon joints. And while most of them were cut with power tools, the final fitting of the joints was done using wood chisels. Whenever you’re trying to fit bits of wood together you’ll find situations where you need to trim just wee bit off to get something to fit, and often the best tool to use for that is one of these:

Now the set with the wooden handles I have is darn near 20 years old at this point, and back then I paid about $120 or so for those, a pretty hefty chunk of money back then. These are Woodcraft brand and I just looked and they don’t seem to carry these any more. A comparable set I did find over there though was going for… Wait, seriously??? $230??? For a set of six chisels? Well, I suppose with inflation and all that, that’s something I should have expected.

What I’m about to tell you would probably give some woodworkers a stroke, but forget about fancy matched sets, things like “Sheffield steel” and “hand forged” and all that guff. You don’t need a fancy boxed set of over priced chisels. You don’t need six, you could probably get away with two, a one inch and a half inch, and maybe a one-quarter inch. For most people those three are all you’ll probably ever need. Of all the chisels I have, the 1 inch and the 1/2 inch are the ones I use about 95% of the time.

And here’s another thing. One of those chisels up there is not like the others. Way off on the left is that nasty looking one with the black handle. Guess what? The reason it looks nasty is because that one lives on the workbench and gets used for everything. It’s a Stanley brand, looks nasty, has a cheap, dented and stained plastic handle, and I paid a whopping $1 for it at a garage sale. Yeah, a buck. And guess what? It works just as good as the high end Sheffield steel ones to its right. Oh, it doesn’t feel quite as good in my hand, it looks awful, but it holds an edge almost as well as the expensive ones. And because it was so cheap I’m not afraid to whack it with hammers, use it to open paint cans, scrape glue or whatever.

So don’t get all goofy about chisels the way some people do. Just go get yourself two or three cheap Stanley’s off the wall at the local hardware store.

The woodworking “elite” will have a fit about this, but when it comes down to it a chisel is, well, a chisel. What matters isn’t the brand, what the handle is made of or any of that. What matters is if it can be sharpened easily and can hold an edge while being used. Period.

But I’ll be honest, I still love those Woodcraft ones and I think they are much, much better. But whether that is because they really are better, or I just think they are, well, I’m not really sure.

Sidenote: I talk about the Stanley brand hand tools quite a bit in this because it is a brand just about anyone who has ever been in a hardware store will recognize, not because I have stock in the company or something like that. I know a lot of people badmouth Stanley hand tools and I’m not sure why. They’re cheap, usually of decent quality, and generally better than the more generic brands that seem to pop up and then vanish almost overnight every few months.


The other cutting hand tool I want to talk about is the handplane.

Planes get complicated real fast because there are dozens of different types of special purpose planes out there. But you really don’t need to worry about any them. While there are some really neat speciality planes, generally when it comes to those speciality needs you’re going to resort to using power tools like a router, shaper, jointer or planer. But the two most basic types of hand planes can be very useful.

A hand plane is, well, basically it’s a wood chisel held in a special frame. The frame holds the plane iron (the cutting bit) it at a specific height and angle so it doesn’t cut too deep and helps to direct shavings up away from the throat of the plane and out of the way of the cut. It lets you smooth off high spots on a piece of wood, trim the edges of a board, trim the edge of a door that doesn’t fit, shave off sharp corners, that kind of thing.

The one on the bottom is my favorite. That is a Stanley block plane (sheesh, there’s Stanley again). Block planes are a bit different from a standard bench plane (that’s the one with the wooden handles in that photo). The blade is set at a lower angle, with the bevel up, and it is designed to cut end grain easily and do light touch up work, take off sharp edges, and work across the grain instead of with the grain. It’s small enough to use with one hand, fairly lightweight and easy to use. This one lives full time on my workbench and it gets used a lot. I use it for cleaning up tenons, knocking off sharp edges and things like that.

They’re handy and reasonably cheap. Dear lord, don’t buy into the hype and pay a hundred bucks or more for one of the fancy ones block planes!. The Stanley works quite nicely, thank you very much, and you can get one for about $30 off Amazon. Yes, you’ll need to do some tinkering with it to get it to work really well, although out of the box is generally isn’t horrible. You’ll definitely need to sharpen the blade and perhaps flatten it. And you may need to flatten the sole of the plane. But that’s easy enough to do with some wet/dry sand paper glued to a sheet of glass. And there’s no need to get obsessive about it and get out your micrometers and all that. Close is good enough for a block plane.

If you do get a plane, I recommend you go out on the internet and look at a short 7 minute video at Fine Woodworking’s website about how to properly “tune up” a plane. ( Most hand planes will need to be checked over and have some work done to them before they work really well. It isn’t that hard to do, doesn’t take long, and that video goes through the basics pretty well. If you know what you’re doing you can take even take a not very good hand plane and make it work at least reasonably well.

The other plane up there is my Wood River #4 1/2 bench plane.

So, what’s a bench plane do, and do you need one? Basically this is what you’d call a smoothing plane. It’s used to smooth the surface of wood, take down high spots, smooth rough areas and things like that. The #4 is the most common size, usually about 9″ long and with a blade that’s about 2″ wide. I find the #4 a good, all around size. But I prefer the 4 1/2 personally.

So what’s with the 1/2 bit? The 4 1/2 is longer, about 10″, the blade is a bit wider, and it is considerably heavier. I work with mostly hardwoods like white oak and ash, and since I build furniture I work with some lengthy pieces of wood. The 4 1/2 is heavier, meaning it’s easier to keep enough downforce on it to keep a cut going even in hardwood. It’s slightly wider so it covers more territory. And the way I have this one set up and tuned up I have virtually zero tearout. It is smooth and slick and cuts through hardwood like butter, peeling off shavings so thin you can almost read through them. I love this plane. I used this plane to smooth down a white ash table top that was two and a half feet wide and almost four feet long. If it can handle that, it can handle anything.

But do you need one? While they can be nice to have, probably not. Not for a newcomer to woodworking. Nor is something like this an impulse purchase because this is the most expensive hand tool in the whole bunch. The Wood River up there currently is selling for about $200. Granted the Wood River is a high quality hand plane. There are more expensive ones on the market but I did a lot of research before buying this one and the Wood River line of hand planes is just plain good across the board. (oh, wait, that was a pun, wasn’t it – plane, plain. Feel free to wince if you like.)

What about the cheap ones? You can pick up generic bench planes for not much more than that Stanley block plane. But almost all of those aren’t worth the effort it would take to recycle ’em. I have a few of those cheap models, and no matter what I do to them to try to properly tune them up, they’re so badly made with such poor tolerances and poor materials they’re pretty much hopeless.

What about used planes? Well, good luck in finding one at a decent price. Old hand planes have become collectors items, and collectors have driven the price of old planes through the roof. If you do find one chances are good it’s been used hard and will be in bad condition and won’t be good for anything except as a display piece.

In my opinion you probably won’t need a bench plane unless you start to get into building high end stuff. For most of us, all you really need is that $30 block plane.

Sharpening Stuff

Sooner rather than later you are going to need to sharpen this stuff. Chisels get dull, plane irons get dull, saws get dull, and when that happens they don’t work well and can even be dangerous. A mentor of mine once said that more people get hurt by dull tools than sharp ones, and he had a very valid point. Unfortunately nothing seems to generate more hot air, bluster and nonsense than the topic of sharpening. Entire books have been written about sharpening, there are hundreds of hours of video floating around out there, and to be frank, a lot of it is pure nonsense. Some people get ridiculously obsessive about sharpening, often to the point where I don’t see how they ever actually get any work done because they’re spending all their time trying to get the perfect edge on their tools rather than actually doing any work.

Saw Sharpening

I don’t recommend sharpening saws yourself. It requires special tools and skills and generally isn’t worth the effort. Use a sharpening service. Or better yet start using the Japanese style saws like the Suizan up there and when it goes dull just recycle the blade and buy a new one. As I said before, $20 for a replacement blade is probably going to be cheaper than trying to get it resharpened. And the blades last a long, long time.

Chisel and Plane Sharpening

This is something you can do for yourself, and you’ll have to do it because chisels and plane irons get dull pretty quickly depending on what you’re doing with them.

There is a lot of silly stuff floating around on the internet about sharpening, and most of it isn’t worth bothering to read or listen to. I don’t think I’ve ever seen a subject where people get more weird and obsessive than sharpening. This is going to irritate a lot of people, I imagine, but when you find these guys talking about getting mirror polish on the bevels, sharp enough to shave with, and all that guff, it’s just that, guff. It doesn’t matter! The goal isn’t producing a chisel or plane iron that you can shave with, it’s creating an edge sharp enough to cut wood and staying sharp during a reasonable amount of use. I’ve seen Youtube videos of guys spending twenty bloody minutes to get the perfect edge on a chisel. But guess what? The very first time they actually use that chisel the edge is already starting to dull and it doesn’t cut wood any better than my chisels do. And it takes me maybe 30 seconds to sharpen mine.

Don’t get me wrong. Sharpening your tools is incredibly important, and it’s something I have to do so often that I have a workbench setup exclusively for that purpose. And you’ll notice that there isn’t a single leather strop, expensive sharpening stone, exotic honing oils or or diamond hones or any of that other stuff sitting around there. Just two power grinders, the Rikon with the white abrasive wheels for my lathe tools, and the Work Sharp sharpening wheel I use for chisels and plane irons.

Let’s look at a really bad drawing of the parts of a chisel.

Thought I was kidding when I said it was a really bad drawing, didn’t you?

When sharpening a chisel (or a plane iron) there are three things we’re concerned with; the angel of the bevel, the cutting edge and, believe it or not, the back side of the chisel. You’d think that the only important thing when sharpening a chisel is getting that cutting edge sharp. But that’s only one third of the whole process. All three of those determine how well the chisel will cut wood. Sounds complicated but it takes me a half minute or less to do it.

Here’s a short video of me down below sharpening my $1 garage sale special Stanley chisel, and doing it in less than half a minute. How? I cheat of course. I use a machine. In this case it’s a Work Sharp sharpening system. And yes, it works just as easy and fast as it shows in the video once you get it set up. I admit it isn’t cheap. It goes for about $200 over on Amazon. But the darn thing just works. I don’t know how much time and effort this thing has saved me in the years I’ve owned it. I’ve had this one for, good grief, must be ten years or so now. It is one of the very few sharpening tools I own that actually lives up to its advertising.

Let’s see if this video thingie actually works and take a look at me actually sharpening a chisel, in this case my beat up old $1 garage sale Stanley.

dear lord that shop is a mess!

Egads, looks like it did upload the video. Okay, let’s go through this.

I blackened the backside of the chisel and the bevel to make it easier to see what actually happens. First I put the back of the chisel flat down on the sharpening wheel and hold it in place to make sure the back of the chisel is perfectly flat. Once I do that, I put it in the guide underneath and slide it up onto the underside of the wheel, which also has an abrasive on it. The guide holds it at the correct angle for the bevel. Then when it was finished sharpening I got a piece of scrap oak and sliced some end grain to see how sharp it was. Which was pretty darn sharp. It doesn’t slice through end grain like a hot knife through butter, but it’s pretty darned close to that. You couldn’t shave with that chisel, but I don’t want to shave with it, I just want it to cut wood, and it does quite nicely, thank you. And it took – what? Less than 20 seconds to sharpen it?

But, GF, you say, I don’t want to drop $200 just to sharpen a chisel. Good for you. I don’t blame you at all, and you don’t have to. You can do it by hand with a piece of glass, some wet/dry sandpaper and one of these.

As the label says, that’s a honing guide made by Veritas. It, along with the gadget to help you set the correct bevel angle, will set you back about $70, or a bit less if you shop around. When set up properly it will hold your chisel or plane iron at the proper angle. Then you get out a piece of glass, stick some wet/dry sandpaper to it, and use the guide to hold the chisel properly while you move it back and forth across the sandpaper. You start with maybe, oh, 240 grit paper, and work your way up to 1,000 grit. That should give you and edge that’s more than sharp enough for general woodworking.

It works reasonably well, and I sharpened chisels like this for a long time before I got the Work Sharp rig.

That’s it for this time. In part 3 I’ll look at tools where the prices do get pretty high pretty fast, power tools.

Amateur Radio Tools and Test Equipment Part Three: Test Equipment

(Note: This rather quickly turned into an article about stuff you don’t need and why you don’t need it, rather than about stuff you do need. So it goes…)

Now there is a whole slew of test equipment some people claim you need. And you go out and spend your hard earned money on it and find that well, no, you didn’t actually need it. The fact of the matter is that unless you’re really into electronics development work, need to diagnose and repair some rather expensive and complicated equipment, you don’t really need much more than a volt/ohm meter and a couple of other items. And this is coming from someone who admits he has a — a problem, shall we say, when it comes to tools and test equipment. Basically I see a new tool or piece of test equipment my eyes glaze over, I start to shiver uncontrollably, instinctively reach for my credit card…

What do you really need? Well, at the top of the list is a decent volt/ohm meter of some sort. Usually abbreviated as VOM or DVM for the digital versions, or multi-meters. It’s pretty much an essential tool. But which one do you get? They come in all kinds of shapes and sizes, all kinds of different options, and prices that range from little more than pocket change to “OMG who the hell can afford that”.

You don’t need to spend a fortune on a VOM, but you don’t want to get one of the bargain basement varieties out of the $2 bin at the lumber yard either. For the average electronics hobbyist you can get a perfectly good VOM for around $30 – $40. I wouldn’t spend more than $150 or so on one for one unless I was, oh, repairing equipment on a professional basis or something like that.

Which one do you get? Well, if you’re me — all of them… Okay, that’s an exaggeration butScreen Shot 2017-03-18 at 7.43.09 AM
the fact is that I have about a dozen of the dopey things laying around, from small pocket models smaller than a deck of cards to bench top models and even rack mounted units. Including one of these over there on the right. I don’t think I have it any more and it never worked in the first place and I have no idea where the thing even came from because I don’t remember buying it. (I think people break into my house not to take things, but to leave me things so they don’t have to pay recycling fees…) And it wasn’t even a VOM come to think of it but some kind of frequency counter or something…

Never mind, let’s get on with this.

The kind you do need is your basic VOM, something like one of these over there on the left. IMG_0020The Fluke is the one that lives on my workbench and that I use the most often these days. The Radio Shack model… Well, heck, I probably have a dozen RS meters because when I was a technician out in the field things happened… Oh, brother, did things happen. And RS stores were just about everywhere and the stuff was cheap and reasonably good.

Anyway, something like that Fluke will set you back about $150. The RS model is a lot less. Think I paid about $40 for that one something like 15 years ago. It seems about as accurate and useful as the Fluke, so why did I buy the Fluke? Well, it’s — it’s so shiny

They both do pretty much the same things for the most part. Both have replaceable probes/leads. And yes, you need that. You do not want a meter that has the leads wired directly into the meter. Accidents happen – melted probes, broken, frayed wires, melted wires… Stuff happens. (You did remember to unplug the equipment and discharge those high voltage caps, right? Hmm?)

Another piece of test gear that is pretty much essential for the amateur radio operator is something called a dummy load. No, this is not a truckload of ventriloquists dummies. Nor is it a load of politicians. It’s a sort of, oh, let’s call it a radio black hole.

When you’re testing and/or working on a transmitter, you have to actually transmit with it. And you need to hook the output of your transmitter up to something that can suck up the power or it can either damage your transmitter or send potentially illegal radio transmissions out into the air and enormously irritating the FCC. Or your neighbor who suddenly finds all of the electronics in his/her house going wonky.

A dummy load is really just a big, heavy duty resistor or resistors that absorb the power being dumped out by your transmitter and converting it to heat. Nothing magic, just basic physics. You can probably build your own if you like. There are tons of examples out there. Or you can buy one. Ones that can handle under 100 watts of power are out there for well under $100, some down in the $30 range.

If you fiddle around with amplifiers like I do, you’re going to need something that can handle a lot more power because those big HF amplifiers can potentially put out well over 1,500 watts. One of the cheapest methods of dealing with it was the so-called “cantenna” which was basically a paint can with a big honking (that’s a technical term, honking, you know, like ginormous, or widget, or doodad) resistor sitting in a gallon of transformer oil used to cool it. They’re still on the market and they do work pretty well. You can pick them up for under $100.

If you don’t like messing around with all that oil and stuff, you can get fan cooled dummy IMG_0027loads that can handle higher power, but you’ll pay for it. Something like the Palstar over on the right will set you back around $375 or so. A bit less if you can find one used. I think MFJ makes one as well.

Which one do you need? Well, as much as I like the DL2K I’m the first to admit that you don’t need one unless you do a lot of fiddling around with high power amplifiers. At the time I picked this one up I was doing just that and it was very, very useful. But most people don’t mess around with amplifiers that often and you can get away with something a hell of a lot cheaper. Even if you do use amplifiers, one of the “cantenna” type dummy loads will probably work just fine for you at a quarter of the cost.

That’s the thing with some of this equipment. It’s very handy to have around, and IMG_0017sometimes you absolutely have to have it. But you’re going to use it so rarely that you wonder if it’s worth the cost. It’s like this thing, my antenna analyzer over there on the left. It is a genuinely useful gadget for analyzing the performance of antennas, feed lines, helping determine antenna lengths for specific frequencies, etc. but how often do you really need one?

They aren’t exactly cheap. A good one will set you back about $300 or more. And while they are very useful indeed, I hesitate to recommend you buy one because chances are good you don’t really need one. I picked it up because I love messing around with antennas. I have three antennas in actual use at the moment and have about five more I want to put together and set up or am planning on building and experimenting with once the weather gets a bit better. So for someone like me having one of these makes sense. But even I don’t use it all that often. In fact, as often as not I lend the thing to other amateur radio operators who are setting up antennas so they don’t have to go to the expense of buying something they’re only going to use once or twice.

That brings me to this thing, another piece of test equipment you probably don’t need but really, really want, the oscilloscope. Look, I know you want one. You really, really do. It has all those fun IMG_0019buttons and knobs and that fancy display and it’s just so cool. But do you need one? Probably not. I’ve had this thing for like three years now. How often have I actually used it for anything serious? Twice. Twice in three years. Sheesh…

This isn’t the first ‘scope I’ve owned, either. I’ve had various “old school” CRT based models of various vintages over the years, and to be perfectly honest, I’ve almost never used any of them. They look really, really cool sitting there on the workbench. Sometimes I’ll turn it on and smile at it, pet it, scratch it behind the ears, tell it that it’s a good ‘scope and give it a treat, then turn it off and go back to whatever I was doing. But actually use it? But owning an oscilloscope seems to be, oh, like some sort of right of passage for a lot of amateur radio people. Having one of these sitting on the workbench means you’re “serious” about it, not just fiddling around.

That’s the problem with a lot of the test gear out there. It’s often something you’ll only use once or twice, and that’s it. So is it worth investing hundreds of dollars in something you’re going to use once in ten years?

Unless you’re really into circuit design, equipment repair, experimentation, development work, etc. most of the fancy test gear you see out there isn’t going to be very useful.

How often are you going to need a spectrum analyzer? Probably never unless you’re repairing a lot of equipment. Or a function generator? I’ve got one of those as well. I’ve never used it. At least that one didn’t cost me a fortune because I built it myself.

Now I’m not saying you shouldn’t buy the stuff, but make sure you really need it and can afford it before you pull out the credit card. You might also be able to find a super cheap version of the test equipment that isn’t very sophisticated or even isn’t very good, like some of the cheap oscilloscope kits out there, but which will work well enough for what you need it for.

You can often borrow the stuff from a local amateur radio or electronics hobbyist if you can find one. We’re typically friendly people and once we know you aren’t going to go running off into the night and selling off our stuff on eBay or something, we’re generally more than willing to lend you stuff.


Amateur Radio Tools & Test Equipment Part Two: Soldering and Power

Ha! You thought I was going to get bored with this and there wouldn’t be a part two, didn’t you? Well there is a part two, so let’s get on with this, shall we?

Screen Shot 2017-03-11 at 12.05.02 PM
Can you say “horrible mess” boys and girls?

Almost any kind of fiddling around with electronics of any sort is going to require soldering sooner or later. Soldering is the joining of two or more bits of metal together via the application of heat and solder, a metal which has a lower melting point than the two bits of metal being joined. The solder serves two purposes: First it physically joins the two parts together. Second, it provides electrical continuity, a path for electricity to flow. It requires the use of a heat source, i.e. a soldering iron or pencil, and the solder itself.

Solder is usually an alloy of lead and other metals, or one of the newer lead free solders that generally include antimony, copper, silver, zinc and/or other metals to replace the lead. Silver solder, a mixture of silver and copper, is widely used in reflow and wave soldering, and often for hand soldering as well. Because of the health issues related to lead, many manufacturers are moving to the use of lead free solder. Lead based solder is still widely available and is still legal, but I would not be surprised if it is phased out entirely in the fairly near future.(1)

Now I’m not going to launch into a tutorial on how to solder. There are hundreds of the things floating around out there on electronics web sites, YouTube, etc. Some of them actually know what they’re talking about. I’m going to talk about the equipment you need to actually do it. And the first item is a soldering iron.

A soldering iron or soldering gun or soldering pencil is the essential tool. It is the device

Screen Shot 2017-03-11 at 12.05.56 PM
I’d love to see someone try to solder SMD chips with this puppy.

that actually generates the heat that is required to melt the solder. Oh, look, there’s a soldering iron over there on the right. The big can thing is, by the way, a blow torch. My, isn’t it a handsome thing, all 19th century looking and steampunky and all that.

Well it is a soldering iron, but not exactly the kind we’re interested in, now is it? I think we’re interested in something a bit more modern and which won’t burn down the house if you actually try using it the way this one could. So let’s look at this one instead, shall we?

The very first soldering kit I bought was essentially this exact same set from Radio Shack back around 1970

This is a cheap Radio Shack soldering pencil from a hobbyist soldering kit that I picked up for… Well, I forget what I paid for it but it was under $30. And with Radio Shack going bankrupt (yes, again) if there are any RS stores in your area you might want to run out and see what kind of deals you can pick up. It came with a clip on heat sink, needle nose pliers, side cutters and a few other goodies. RS has been selling this same basic kit for something like 40 years. The soldering pencil is cheaply made and often doesn’t last very long, but if you’re just looking for a cheap way to solder a few joints this will get the job done.

If you’re going to do any kind of serious electronics work, though, you’re going to need something like this over here on the right. That’s my Weller variable temperature soldering station with a digital readout for the temperature. It is a lot more money than the RS special, going for around $140 or so,

The Weller has been going strong for 5 years now

but I’ve had this one for about 5 years now and it’s still going strong and works quite well.

Two things you want to look for – a variety of different tips for different soldering jobs, and variable temperature. You need different tips for different types of soldering, from needle sharp tips for small components to spade type tips for desoldering. And the temperature control is, I feel anyway, essential. Different formulas of solder have different melting points. You want it hot enough to adequately melt the solder while at the same time not too hot to avoid damaging the equipment you’re working on.

A couple of other things before we move on here. You see a couple of other items in that photo, a thing that looks like a rather odd syringe, and a golden ball full of what looks like hair.

The ball thing is actually a tip cleaner. The ball holds steel wool. The hot tip is rammed into the steel wool, cleaning it of accumulated solder, flux, etc. Some kind of tip cleaner is essential. A dirty soldering tip does not conduct heat well, and heat is what it’s all about. The cleaner the tip, the better.

The blue and chrome gadget is what is generally called a solder sucker, a tool for removing rather than applying solder.

Screen Shot 2017-03-11 at 12.10.11 PM
Desoldering wick or braid

I find that I’m often using my soldering equipment for removing solder rather than applying it. You’ll find you have to desolder components from a circuit board before you can make a repair or modification. The only way to do that is by melting the existing solder and removing it somehow.

The sucker works by applying a vacuum which sucks up the solder. There are different types. Some use rubber squeeze balls, some use a piston powered pump like this one, others, much more expensive, have electric vacuum pumps. The other way is to use solder wick or braid. This is a metal braid, usually coated with some kind of flux to attract liquid solder better. The braid is pushed down onto the cold solder with the tip of the soldering iron when then heats everything up and the braid absorbs the liquified solder.

If you do a lot of desoldering, you might want to get an actual desoldering system. But for most of us good old desoldering wick or a solder sucker is good enough.

Let’s move on to one final item in this discussion about soldering, and that’s this puppy, IMG_0030the ubiquitous soldering gun. These things are designed to apply a lot of heat to large objects, quickly, and as such they are virtually useless for most electronic soldering jobs. They’re too big, too awkward, apply too much heat. Using one of these on a circuit board is sort of like using a 12 gauge shotgun to hunt mice. You can do it, sure, but there isn’t going to be anything left of your quarry when you’re done.

But there are times you need something like this. Especially if you’re trying to solder PL-259 connectors. Your average soldering pencil just doesn’t supply enough heat quickly enough. By the time you’ve heated the connector up enough to solder it, you’ll discover you’ve also melted about two inches of the insulation on the coax as well.

Now there are other things I haven’t touched on that are related to soldering, but which I’m not going to get into. Like SMD. SMD stands for Surface Mount Device. Discrete components (even entire IC chips) are now often mounted not via good old fashioned through-hole connections, but on solder pads on the surface of the board. While this is great for robotic assembly systems, it’s not good for people who want to try to repair the blasted things or have to otherwise work with SMD technology. Dealing with resistors, capacitors, diodes and other components that are about the size of a quarter of a grain of rice and mounted on the surface of a board on solder pads, well, it isn’t exactly a great deal of fun. Working with SMD can be done, but it takes practice, a steady hand, and a pretty good magnifying lens, preferably with a built in light.

Then there is the question of fumes. There is no denying the fact that some of the fumes given off by solders and fluxes when heated are not healthy for you to breathe. Even some of the plastics that the components are made from can give off fumes that are toxic. If you’re just soldering a joint or two it isn’t bad, but if you’re doing a lot of it, you’re going to want to look into a good venting system or a fume extraction device of some sort.

Now let’s look at power.

Power. As in electrical power of course. You need it.

Screen Shot 2017-03-12 at 8.14.10 AM
Very soon your house wiring will look like this

Now with most devices you just plug the thing into a wall socket and turn it on. But sometimes things are that simple. Once you get into amateur radio and/or electronics, you will quickly find out that different devices have different power requirements. Odd ball voltages, weird batteries that no one carries, and odd power connector plugs. Sometimes very odd power plugs.

Now a lot of amateur radio equipment runs on 12 volt DC. My Kenwood TS-2000 transceiver requires 12V, my antenna tuner runs on 12V, my big dummy load runs on 12V.

And to complicate things a bit more, 12V doesn’t actually mean 12V. For reasons I won’t get into here (you do have that google thing, right?) most 12V devices actually want around 14V, and if you try to feed them less than that some very strange things can happen.

Now if you do have 12V equipment you want to run, what do you do? Go out and get

Typical 12V power supply on a very dirty work bench

yourself a car battery or something? Well, you could if you really wanted to. It would work. For a while. But you’re going to need a 12V power supply similar to this one over on the left. This particular one has a handy Amp meter that tells you how many amps the device(s) connected to it are drawing, and a meter showing the actual voltage the power supply is producing. This particular power supply allows you to adjust the voltage up to about 16V if you need it for some reason.

You can get power supplies with all kinds of bells and whistles on them, but you don’t really need most of them. You can get switching power supplies, transformer power supplies… Generally the switching power supplies are a lot lighter, but they have more electronics in them that can screw up. Transformer based power supplies generally work well, but can use significantly more electricity than switching supplies. Which one you choose depends on what your preferences are, budget, etc. Before you buy one go check out the reviews on or other sources first.

Once you do get a power supply, the question of how to get that power to the equipment that needs it comes up. Most 12V power supplies only have one or two supply points on them, and generally they aren’t the most convenient things in the world to use. You basically shove a couple of wires into holes and have to tighten down screws to make the actual connection. It’s awkward, and if you have more than one piece of equipment and only one power supply, you’re going to wear those screws out pretty fast switching things around. So I use one of these for 12V power.IMG_0028

This particular unit is a Rig Runner from West Mountain Radio. It’s basically just a power strip, but for 12V rather than 120V. The main line from the 12V power supply is plugged into the outlets on the far left, and the other connectors then distribute that power. Each of the outlets is fused for various amperage requirements. If you’ve never seen that kind of connector before, don’t worry, I’ll come to them in a minute.

Now power strips like this are available from a variety of companies. MFJ makes them, as does West Mountain. Or you can make your own easily enough.

Now let’s talk about those connectors. If you haven’t seen those before, they’re called IMG_0029Anderson Power Pole connectors, and they’ve become something of a standard method of connecting power to devices in the amateur radio community. ARES has declare them to be the universal power connector out in the EmCom world, and I have to admit they make life a hell of a lot easier. No more stripping wires, fiddling with electrical tape and all that nonsense. Just install them on the ends of your power leads and you’re good to go.

The drawback is that while they’re simple to use, they do require a special crimping tool to install them on the ends of your wires. A good one like the one in the photo there can set you back a hefty chunk of money.

But if you’ve ever had to fiddle around in the cold under the dash of a car trying to strip insulation off wires, wrap wires with electrical tape, well, that kind of thing gets old fast.

Let’s talk about 240 volt for a moment. The only reason you might need 240V in your shack is if you’re going to be running a 1,500 watt output amplifier. If you want to fire up a big old tube amp and pump enough energy into your antenna to melt the vinyl siding on the neighbor’s house, hey, who am I to tell you not to? But do you really need it? No.

If you really need to put out more power, a 500 – 600 watt amplifier will generally run pretty well on 120V. A lot of the high output amps can be rewired to run on 120v, although at reduced output. So no, you don’t really need 240 volt in your shack.


  1. I am not going to get involved in the heated argument of lead versus lead-free solder. While many claim that lead-free solder works just as well, is just as reliable, and is just as easy to use as the lead type, there are probably an equal number of people who will claim the lead-free solders are utter garbage. I switched to using lead-free solder for plumbing something like thirty years ago and I’ve never had any problems with it. While I still use lead based solder for electronics, that is due to the fact I have about fifty spools of the stuff laying around the house.

Amateur Radio Tools & Test Equipment Part One

I thought it was time to answer a few questions about amateur radio that I’ve gotten over the last couple of months, specifically about what kind of tools and equipment you need if you want to do some serious fiddling around.

Someone once told me that most hobbies are little more than an excuse to buy lots and

Screen Shot 2017-03-11 at 8.33.49 AM
Admit it, you really want one, don’t you, even though you don’t know what the hell it is.

lots of tools that you’ll never use, and for a lot of people, like me, that’s pretty much true. It’s even worse for me because I build furniture as well, so in addition to a whole slew of tools and test gear for amateur radio that I almost never use, I have a whole slew of tools for wood working that I almost never use as well.

One thing they don’t tell you when you get your amateur radio license is that you will immediately be overwhelmed with an intense desire to buy tools and test equipment that you never knew you had to have before.

Do not resist this urge. You have joined the dark side. You are ours now… Ah, oh, sorry. Slipped off there for a minute. Happens sometimes. Solder fumes, I think. Now, where was I? Oh, yeah, tools for amateur radio and fiddling with electronics.

Since amateur radio is about electronics, you need the basic gear that all electronics

Small hand tools. You probably already have most of ’em, but you probably can’t find them either, can you?

fiddlers need. The stuff isn’t expensive and is widely available. You probably have a lot of it already. Wire strippers for stripping insulation off wires. Unless you want to use your teeth which is really isn’t recommended. Not unless you really want to pay for sending your dentist’s kids through college.

Needle nose pliers, two sizes and two types. Medium and small, and straight and curved. Wire cutters (no, nail clippers will not work!) are essential. Screw drivers are essential as well, both straight and philips, and you might as well get those funny torx ones too while you’re at it. A set of nut drivers will come in handy, needle nose vise-grips are often very useful, especially the small ones.

Do I really need to tell you not to get the bargain basement variety out of the one dollar bin? Hmm? They don’t last and can actually damage the stuff you’re working on.

Oh, some type of non-conducting probes with pointy ends come in handy for digging around through rat’s nests of wiring, prying components up off of circuit boards, etc. Non-conductive because while the nice women and men in the ambulance are more than willing to try to restart your heart after you’ve jolted yourself senseless, sometimes they can’t get you jumpstarted and… You’re life insurance is paid up, isn’t it? Hmm?

That’s the basic hand tools. out of the way, sort of. Most people who’ve done any kind of messing around with anything (no, not that kind of messing around. My, you have a dirty mind, don’t you?) will have the basic tools already in the cupboard, or under the sink, or in the basement. If you can’t find them, don’t worry. They’ll turn up sooner or later. Usually after you’ve bought another one to replace the one you lost.

Let’s assume you have the basic tools in hand, and look at things specifically related to electronics and especially amateur radio, shall we?

Tools and test equipment generally fall into one of three categories: Things you absolutely, positively need to have, things that are nice to have but you can probably get along without them at least if you can borrow it from someone else, and things you pretty much will never need unless you’re into some kind of exotic and unusual kind of activity. Like,

well, this, for example. I can firmly attest to the fact that a set of scale calibration weights is pretty much useless in amateur radio. I keep telling myself I should schlep them around to hamfests along with all of the old laser gear I have laying around, but I can’t bring myself to get rid of the stuff because, well, there might be a scale I really need to calibrate some day, or I might run into a 30 year old laser I can finally use that stockpile of tubes and power supplies I have laying around. You never know, right?

So let’s concentrate on stuff you actually need first. And if you’re in amateur radio, right IMG_0039up at the top of the list is this, an SWR meter. Having one of these is pretty much essential. While a lot of modern transceivers have SWR meters built into them, a lot don’t, especially mobile and hand held transceivers. You really do need one of these. They don’t cost all that much, you can get a decent one for well under $50. It isn’t just essential for tuning antennas, it can help prevent you from seriously damaging your transceiver if something goes wonky with your antenna system without your knowledge.

And while we’re on the the topic of SWR meters, let’s talk about jumpers. This is a short piece of coax with a PL-259 connector on each end (or whatever connector you need) that connects between  your IMG_0035radio and your meter or dummy load or other test gear. They look something like this, and you’re going to want to have a few of them ready to go. Of course you won’t be able to find them when you need them, but that’s the way it goes.

A lot of people make their own. Or claim they do. But soldering PL-259 connectors to coax is such a pain in the neck that I suspect most people just buy them pre-made. You don’t need really super hefty coax for jumpers. They’re generally only 2-4 feet long, so any losses are going to be fairly insignificant.

If you’re cheap, like I am, you can make your own, but don’t make the mistake I did. I picked up an entire spool of LMR-400 coax a few years ago, so rather than spend actual money to buy jumpers, I made ’em out of the 400, neglecting to take into consideration the fact that people tend to move test equipment and radio gear around and LMR-400 doesn’t actually bend very well.

While we’re on the subject of coax, let’s talk about, well, coax. While you can use things like ladder line to connect to your antennas, most amateur radio operators use coax cable IMG_0031because it’s more convenient. Now you can buy coax from a lot of different sources in various lengths, with the connectors of your choice already installed, or you can save a few bucks by buying the cable in bulk and then making it to the specific length you need and installing your own connectors. The type of connector used for most HF and VHF antenna lines is called the PL-259(1), and you either love them or hate them. Well, no, I don’t know of anyone who loves them. Most people either hate them or, well, hate them. Unless you have a lot of practice installing connectors on coax, you may save yourself considerable grief, the use of language you do not want your spouse/children/pets to hear, burns, solder all over the floor, melted coax, etc. and just spend the extra money and buy it pre-made in the length you need.

But that being said, it’s not all that hard to install the things, it just takes patience and practice. There is also an alternative to soldering the connectors, and that is crimp connectors which use a special tool to crimp(2) the connector onto the line instead of soldering. And while a lot of amateur radio operators swear that crimp connectors are utterly worthless, the fact of the matter is that they have been in use for decades and work pretty darn well and seem to be as durable and reliable, when done correctly, as soldered connections.

When it comes down to it, you don’t absolutely, positively need to be able to make your own coax, attach your own connectors, etc. It’s nice to be able to do it, but you can get the stuff in any length you need, with connectors already attached, and probably attached a hell of a lot better than the average amateur radio operator could do it.

To be continued…


  1. I know some guys who will drop five or six grand on a new transceiver or amplifier, and then complain about spending money on high quality coax connectors and buy the cheapest garbage they can find. And then complain later about corroding connectors, solder not adhering to the connector, threads on the collar stripping… Sigh. Do yourself a favor. If you make your own coax, don’t go cheap on the connectors.
  2. Stay tuned! There’s a photo of a crimping tool coming up later in this! Maybe. I think, anyway. Not sure because I haven’t written that bit yet.