GF Builds Something – And It Actually Works!

Now if you’ve been reading this for a while you know there are two things I really, really like – gardening and fiddling with electronics. And when winter rolls in and shuts down gardening, that leaves electronics to occupy my time. Since I am still waiting for parts for the Great Radio Fiasco Project, I was looking for something else to play with and I ran across this on Amazon-

I like playing around with kits, but I hadn’t built one in ages because there aren’t a lot of them out there any more, and the ones that are on the market seem to either be for things I don’t want or need, or are geared for the kids STEM market and are pretty much useless. This one seemed interesting, though. And it was only fourteen bucks, so if it did turn out to be junk, I wouldn’t be out a lot of money. And it I might get an article out of it for the blog.

Let’s talk about kits in general, first. Once upon a time there was a very good reason why kits came about. Before the advent of things like printed circuit boards and semiconductors and all that stuff we take for granted these days, electronic devices like radios, record players, television sets, etc. were built almost entirely by hand, by workers who strung all of the connecting wires, soldered all of the components, etc. Building even a simple radio receiver required placing, by hand, dozens of individual components and hand soldering dozens, even hundreds of connections. Armies of individual skilled assembly people labored for hours at workstations to put these things together. Labor costs money. A lot of money. And eventually technologies like printed circuit boards and robotic assembly systems largely replaced those armies of workers, resulting in the ultra-cheap electronics we have today.

But back then, with labor such a huge part of the cost, someone came up with the idea of eliminating the labor entirely and just selling the parts and some instructions to people and they could build it themselves. The company still made a few bucks, and the buyer of the kit saved a lot of money by replacing factory labor with his/her own. And there were a lot of people willing to do this. Not just to save money but because a lot of people get a great deal of satisfaction from building things.

But as electronics became more complex with people demanding more and more features, designing and producing kits became increasingly expensive. At the same time because of robotic assembly lines and other advances in technology, it became cheaper and cheaper to produce fully assembled and tested electronics. It got to the point where making a kit was often considerably more expensive than just buying the thing outright. There are still kit makers out there, of course. But most of the kits I see these days are for cheap and pretty much useless little gadgets that you’d build and tinker with for a while, then shove it into a box until your children throw it away after you’re dead.

This looked like it might be interesting, though, and it was only $14 bucks, so what the heck. When you buy these cheap kits these days it’s something of a crapshoot. Reading the reviews can help, but with so many fake reviews, and reviews by, well, idiots, really, not even those are very helpful, I’m afraid. (I could probably do a whole column on just how to try to decipher product reviews on Amazon and other online vendors.)

This is what your $14 gets you. Do not despair, my friends. This is actually above average quality for cheap kits like this, and all of the essentials are there. BTW I highly recommend these silicon soldering mats. You can get ’em on Amazon and they not only protect your workbench top, they also resist burns, have compartments to hold small parts and generally keep stuff from getting scattered all over. This one has a magnetized compartment to hold screws.
The instructions were a single sheet of paper and were actually pretty good. If you take the time and read carefully, most of it will make sense. Sort of. There is a website you can go to for further instructions, it says on the sheet, but I found that the website didn’t actually exist. That’s not uncommon with these either. But by carefully reading the instructions, following the diagrams and knowing a bit about electronics, you can get through it. This is most definitely not a kit for a beginner, though.

When it arrived it was about what I expected. Instructions were almost certainly translated from Chinese into English by computer, but unlike a lot that I’ve read, they were actually useful and covered all the important points if you take your time.

Tools

Necessary tools are pretty basic.

Now before you get started you’re going to need some basic tools. If you’ve ever tinkered with electronics before you almost certainly have everything you need to put this sucker together. You’ll need a needle nose pliers with a fine tip to help place components. A tweezers will help too. Some of the components are pretty small. You’ll also need a wire cutter for snipping off the wires on components after they’ve been soldered onto the circuit board. You’ll need solder, of course, and you’re going to need the smallest diameter solder you can probably get. The solder I used was 0.032″ in diameter, 60/40 rosin core. If you use anything bigger than that you’re going to have a lot of problems with solder flowing places where you don’t want it.

You need a soldering iron, of course. Just about any hobbyist soldering pencil will work if it has a fine enough tip. I have a Weller variable temp soldering iron that I’ve had for years now. I like variable temperature soldering equipment because it lets me adjust the temperature to suit the type of solder I’m using, the size of the components, etc. They’re more expensive than a hobbyist soldering pencil, but not that much more expensive. This one isn’t in production any more, I think, but you can get a variable temp soldering iron for about $100 or less. A lot less if you shop around. Unless you use a soldering iron a lot, don’t spend a lot on one. What’s most important is that it has interchangeable tips so you can change the size of the tip to suit the work you’re doing. With this kit I used a very small spade shaped tip because I was working in rather tight quarters on this kit.

You’re going to need two more things. One is absolutely essential, the other highly recommended but not absolutely necessary.

If you do any kind of work on circuit boards you absolutely need something like this to hold it and let you get at the parts from different angles.

You need something to hold the circuit board while you’re putting everything together. You’re going to be holding your soldering iron in one hand, solder in the other, holding a part in place with your third hand, and holding the circuit board with your fourth hand… Hm? What? You only have two hands? Yeah, so do I, which is why you need something like this. It’s a Panavise circuit board holder and while it isn’t ridiculously expensive, at around $60 – $70, it isn’t exactly pocket change either. I do a lot of work on circuit boards so something like this is absolutely necessary for me. If you’re just slapping a kit together, you can get away with something a lot cheaper or even cobble something together on your own out of alligator clips and stiff wire.

The other item that is very nice to have but not absolutely essential is a light on an articulated arm so you can aim it where you need it, with a built in magnifier. A lot of the components are very small, and a lot of circuit boards are very tightly packed, and even if you have good eyesight it can be a real strain to work on some of this stuff without some kind of magnification and good lighting. A light like this on an articulated arm with a built in magnifier can be had for about, oh, $40 or so.

It may look complicated but it really isn’t. Just take your time, double check parts placement before soldering and read the instructions.

Now, on to the clock itself. Putting it all together isn’t extraordinarily difficult, but it is a bit fiddly. There are a lot of solder joints to make. There’s a 28 pin IC socket, two 8 pin IC sockets, 16 resistors, assorted capacitors, a few transistors, a surface mount LED and several other goodies that all have to be fitted onto that board and soldered.

A few words about soldering: I’m not going to try to teach you soldering here. I’ve heard people claim that soldering is an art. It isn’t. Soldering is basic physics. It is the application of heat to a connector causing the solder and flux to flow and adhere to the connectors to form an electrically conductive connection between two or more components. Anyone can learn to solder, but it takes some knowledge and a lot of practice to do it properly. If you don’t know how to solder, or are just learning, this kit probably isn’t the place to practice. There are a lot of solder joints, spaced very close together, and it’s easy to end up with solder bridges, spatter and other problems. So if you’re new to this I’d recommend you try something more simple. Run a search for “solder training kit” over on Amazon or look at the other electronics suppliers out there and you can find more kits that are designed to teach you how to solder.

Ooo, tiny!

Some of the parts in this kit are very tiny and can be difficult to deal with, like soldering headers to a very, very tiny circuit board with an SMD chip on it that has to plug into one of the sockets. And the LED on the board is surface mount. Don’t let that scare you.

I’ve been soldering for, well, probably for longer than a lot of you reading this have been alive, so I zipped through that pretty quickly.

Anyway, the whole kit is very well designed, certainly above average for this kind of thing. The circuit board itself is beautifully made, with outlines and labels printed on the board itself showing the position of the components. All things considered, this is one of the better kits I’ve seen.

Almost fully assembled. It went together quite well.

There were no missing parts, the instructions were decent, everything was well made. It is definitely a winner all the way around.

Even better, it worked the first time I powered it up! It requires about 5V DC and is intended to run off USB, but I just hooked it up to my variable DC power supply, turned on the power and away it went. It’s a really nice little clock, too. It has a photocell to adjust the brightness of the display depending on ambient conditions, a thermistor that lets it sense the temperature (the display cycles between time and temperature), has an alarm and it talks! Well, I’m not sure about the talking part because I haven’t hooked the speaker up yet. It comes with a clear plastic case that I haven’t put together yet. Eventually I’ll probably put together a power supply for it because I don’t want to have to run it off a computer’s USB port. I should have a 5V wallwart kicking around that would do the job.

Disclaimer: I do not get paid for reviewing products. I do not get special deals, free equipment, components or anything else. All the tools, equipment, parts, and everything you see here or I write about were purchased by me at full retail prices.

Misc. Stuff

How stupid are we? Pretty damned stupid, if some of the stuff I saw recently is any indication. Let me explain. I wanted to get one of my sons a stereo system as a combination Christmas and housewarming gift because he was moving into a new apartment over the holiday. I haven’t bought any audio equipment in decades so I did some research and finally decided on a fairly nice and relatively inexpensive receiver, turntable and speakers. But along the way I stumbled across something that can only be described as a world where rationality doesn’t exist. In the world of audiophiles, things like logic, physics and rationality quickly get tossed out the window, it seems.

The lowly power cord is one example. It’s a simple thing, a power cord. You take some copper wire, wrap it in insulation so it doesn’t electrocute you, put a plug on one end to plug into your wall outlet, put another plug on the other end that goes into your equipment, and there you go. The only things you need to be concerned about are the insulation being good enough to protect you, the gauge of the wire being heavy enough to carry the current, and the plugs being well made and attached well so they aren’t a safety hazard.

Unicorn pubic hair harvesting. Artist’s (Artist? Ha!) rendering. No unicorns were harmed in the production of this blog.

But apparently all these years I’ve been wrong. Apparently every single thing I’ve ever learned about physics, electricity, electronics, atoms, electrons, everything, is just wrong. Apparently if I want the best “listening experience” the worst thing I can do is use an inexpensive power cord. I need to spend hundreds of dollars (or more, some of the cables I saw were selling for up to $5,000 for a six foot long electrical cord) for “special” power cords, with “special” connectors, made with, oh, hell, I don’t know – Made with hand harvested, free range, organic, artisanal copper atoms, lovingly caressed with special quantum crystals, and then sheathed in insulation woven from the pubic hair of virgin unicorns. (Hmm, unicorn pubic hair harvesting – there’s a phrase I never thought I’d see in a blog. Or anywhere else for that matter.)

I learned other things as well. Did you know that wire is directional? Apparently electrons only want to flow in one direction along a wire. Wow. I had no idea. I also learned that I need to “burn in” cables. All of your cables need to be burned in, or broken in, a process similar to breaking in the engine of a new car. You need to use those cables for hundreds of hours before you’ll get the best listening experience. And if you don’t want to take the time to do that yourself, you can send them off to companies who will burn them in for you. For a fee. Or you can drop $1,000 – $2,500 to buy a fancy box with many connectors on it that will do it in just a few hours.

I learned that you can’t just run your $1000 per foot speaker cables along the floor. Oh, no. That would be too – too common or something. You need to buy $350 each cable clamps to hold your oh so special cables up off your oh so common and dirty floor.

I need to buy “quantum stickers” at $100 a pop. A lot of them. And stick them on every component in my amplifier and on my cables because they will – well, I’m not sure what they really do, to be honest, but they do something, as confirmed by several dozen glowing reviews from Bob and Stacy and George and others. And, well, come on, Stacy wouldn’t lie to me, now would she? Of course not.

One company sells, for about $150, what for all the world looks like a small block of wood with a logo laser etched on it, and claims that if I glue that sucker inside of my amplifier, many special “nanocrystals” embedded in the wood will do something that will align some kind of quantum field and do mysterious quantum things to the components in my stereo and make it sound better. And all just from being glued to the case! I know it’s hard to believe, but Peter down in the comments section says it made an astonishing difference to the sound.

Wow. Amazing. I need to get me one of them right away.

I could go on and on about things like $1,500 power strips, $250 outlet covers to put over the outlets in your wall that somehow “align the magnetic fields” or some nonsense. “Power conditioning” gadgets selling for thousands of dollars that are supposed to somehow filter out – something that will degrade your “listening experience”. Several places will sell you gadgets for several hundred dollars that will “demagnetize” your CDs.

And all of it is surrounded in sciencey sounding technobabble about quantum this and nano that and aligning quantum fields and… Oh dear lord I can’t stand it any more. Let’s talk about…

Picard

The internet immediately exploded into a tsunami of hype the moment CBS announced it was making a sequel to Star Trek Next Generation starring Patrick Stewart. But when, after all of the Star Trek fanboys came back from changing their trousers, it was learned that CBS would only be showing it on their new streaming service, there was much wailing and gnashing of teeth, but never mind about that, I want to talk about the whole Star Trek thing and Picard because CBS recently made the first episode in Picard freely available on YouTube.

Now the first question that came to mind when CBS did that was, well, why release the premiere episode for free on YouTube? The series has been streaming for a while now and the whole Picard thing was, if we are to be honest, a blatant ploy by CBS to try to force people to subscribe to its streaming service. They apparently believed that there were so many ST fans out there that they would subscribe to the service in great hordes. So the only thing that I could think of is that they were doing it because Picard hasn’t been doing anywhere near as well as they thought it would and they’re trying to pump up the viewership numbers.

Despite the fact I used to be a Star Trek fan, I wasn’t all that interested in Picard. I expected it would be a cheap ST ripoff being produced solely to draw subscribers to a streaming service. I was a fan of STNG when it first came out, and since it’s available on Netflix and Amazon video, I decided to take another look at it a few months ago, hopefully with a more impartial frame of mind than I had when it originally came out and, frankly, it was – unpleasant.

Now I knew there were going to be awkward moments in STNG when I watched it again. The show is now 33 years old, for heaven’s sake. The first episode aired back in 1987. I expected it to look dated, and it did. Often badly so. But what I hadn’t expected was that it would be actually painful. Plots were full of holes big enough to fly a galaxy class starship through. The show was self contradictory, often ridiculously so. It was preachy and holier than thou, especially during the first season. The aliens were, frankly, ridiculous for the most part. And every time Wesley Crusher appeared I kept hoping Picard would strangle the little weasel with his own intestines. And how many times did someone pull a deux ex machina out of their asses to save the day by ‘rerouting the plasma stream into the auxiliary conduit’ or some similar sciencey sounding gobbledygook? I found myself hoping the Borg would win and bring it to an early end.

I started to feel that STNG was the onset of dementia for the ST universe, Voyageur took it into the nursing home, the movies shifted it into hospice care, and finally the abomination that is J.J. Abrams drove a stake through it and turned it into just another SF shoot-em-up.

Now don’t get me wrong. I like SF shoot-em-ups. The new ST movies are fun. As long as you forget about the whole Star Trek universe that existed before Abrams came along and take them at face value.

Wait, I was supposed to be talking about Picard, wasn’t I? Sorry, I get easily distracted. Let’s get on with this.

There Will Be Spoilers. You Have Been Warned

Do I really need to say that? I suppose I do lest some poor lost soul who hasn’t seen Picard or hasn’t seen the hype and nonsense on the internet comes along.

First, this is a Big Budget production. Capital “B”. The cinematography, set design, CGI, everything about it is pretty much top of the line. It is beautifully filmed and edited by some of the best craftspeople, editors and videographers out there.

Unfortunately, the sound absolutely sucks. At least on the YouTube video. Seriously sucks. Volume levels go from hardly audible when normal conversations take place, to ear splittingly loud when something important happens. I had to keep one hand on the volume control through the whole thing.

But on with the story…

Picard is an elderly, angry, depressed, disenchanted man, living on the family vineyard, suffering from dreams/hallucinations and, after the first scene at least, I started to wonder if he was suffering from dementia. He lives on the vineyard with a dog and two Romulans who seem to be his employees/friends.

Switch now to Boston for no apparent reason, where we find a young woman with her boyfriend, who apparently hasn’t heard of The Hair Club for Men and has hair made of bad plastic and the usual “he’s an alien so he has to have a weird face” syndrome. And that hair… I’m sorry, but I just can’t get that hair out of my mind because, I swear to God it looks like they glued coffee beans to the poor guy’s head.

See what I mean about the hair? Look closely. Those are coffee beans. Seriously. They glued coffee beans to the poor man’s head.

They’re sharing a romantic moment when three masked assassins teleport into her apartment, immediately kill the boyfriend, start beating her up, put a bag over her head and…

And then she turns into super-ninja, taking out three trained assassins in less than a minute.

And as she cradles the head of her murdered boyfriend, coffee beans and all, she is thinking of – of Picard?

Roll credits…

And it’s just so contrived, so overly dramatic… Stewart’s performance seems forced, uncomfortable, awkward. Now I know the fellow is like a gazillion years old, but come on, the man is still a good actor, but this performance certainly doesn’t demonstrate that ability. The only time he shows anything that looks like real emotion during the entire 47 minutes is during the brief interview with a reporter that they had to shoehorn in in an attempt to try to explain WTF happened that screwed things up so badly during the last 20 years.

And then we go through a lot of maudlin stuff where Picard visits some kind of museum where all his stuff is being kept for no apparent reason except, of course, to be all poignant and try to remind people that this is the real Star Trek, not the abomination created by Abrams I suppose.

Meanwhile the girl is sitting huddled on a street somewhere, calls her mother, who tells her to “find Picard”, and she does in a sort of computer hacking scene to make sure we know that she is “special”. And she meets him again and he tells her she’s Data’s daughter and then in a dramatic action scene straight out of a bad kung fu movie, her and Picard get attacked by more masked assassins, she kicks ass, and then one of the assassins kills her by- by spitting on her????

But she’s Data’s daughter. And Data’s offspring can only be twins because, well, because of “reasons”, so there’s another one of her, somewhere… And before we roll credits and shut the episode down, we find her twin is living quite happily with the Romulans, who apparently have moved into an old Borg cube…

What? Seriously??? Where did I put that face palm graphic…

Catching Up With Stuff

First of all, there’s this…

MrsGF and I were coming back from her sister’s place and we saw this. The photos don’t do it justice. That sunset almost looked like an atomic bomb going off, lighting up the whole horizon with that single shaft of light extending up. We had to pull off and just stare at it for a while because we’d never seen anything like it before.

Sunsets and sunrises (when we can see them, usually the cloud cover is too thick) have been spectacular of late. I imagine that’s due at least in part to so much particulate matter being in the atmosphere at the moment because of all of the forest fires we’ve been having worldwide.

As far as the weather goes, well, it’s winter, and we have some snow, as you can see from the photos, but it has been, well, weird. Just like 2019 was. Temperatures have been well above normal this winter. So much so that the ice fishermen have been getting nervous because they can’t get out on the lakes. This late in the season the lakes and rivers should have enough ice that you can at least walk out on the ice, and in some cases even drive a vehicle out. But you couldn’t pay me enough money to make me risk walking out on the ice this year. Most of the rivers and streams are still mostly open with almost no ice at all.

Ice fishing is a Big Deal around here. Generally as soon as we get a couple of inches of ice on a lake you’ll see little huts springing up or guys in cold weather gear huddling over holes drilled in the ice hunting for elusive panfish like bluegills and crappies. They endure it because one, they think it’s fun, and two, well, if you’ve ever eaten a freshly caught pan fried bluegill or perch, you know why they do it.

But The big event around here in mid winter is sturgeon season on Lake Winnebago. During sturgeon season there are thousands of people out on that lake, with hundreds of cars, 4 wheelers and snowmobiles, hundreds of ice shanties full of people huddling over holes in the ice hoping to get themselves one of the biggest fish you can get in Wisconsin. These things get to be five, six feet long or even bigger, and can be well over a hundred years old.

But we need ice for that, and we don’t have any. Or at least not enough ice that you can trust it. Unless we get a cold snap that really freezes things up, I’m not sure if there is going to be much of a sturgeon season this year.

We may not have ice but we do have snow. Just had another 3-5 inches, much of which will probably melt over the next few days. But still, it sure looks pretty out there.

While it may be winter outside, MrsGF’s rose in the living room is blossoming again.

I have no idea how she does it, but I’m not complaining. Having roses growing here in the middle of January is huge fun.

The Great Radio Fiasco Project Update

Considering I’m lazy and about the most unambitious person around, I bet you figured I’d sort of conveniently “forgot” about that whole thing, didn’t you? Ha! I wish! Sometimes I’m more stubborn than lazy, though, and when I get a bug about something I get a bit obsessed, and that’s what happened here.

Anyway, that hasn’t been going very well because of stuff like this –

Ferrite rods that were supposed to be part of antenna coils for an AM transistor radio I’ve been trying to build.

One of the first things I discovered when I started doing some research was that I pretty much had none of the parts I was going to need. I may have had hundreds of diodes, capacitors, resistors, potentiometers, transistors and other goodies sitting on the shelf from other projects, but it seemed that none of them were what I needed for building any kind of radio receiver except for the most basic of items. So once I decided more or less on what kind of radio I was going to build, I had to order some parts. And as you can see above, sometimes it doesn’t go so well.

The main project is going to be a multi-band shortwave receiver, but I was also going to build an old fashion 1960s style AM transistor radio which uses a ferrite rod wound with wire as an antenna. What you see in that photo above is what was in the package when I opened it. Sigh… Don’t get me wrong, though. I order a lot of parts, and the vast majority of the stuff gets here in perfect condition. But every once in a while something like this happens, and all you can do is just sigh and go on. It doesn’t pay to try to do anything about this in this case. I only paid about $10 for them, the company is in China, and any chance of getting a refund or replacement is so slim it’s not worth the effort. On the plus side one of the rods is relatively undamaged with just a chip on the end, so it will work well enough for the AM radio.

But it does help to illustrate one of the problems I’ve been having, which is tracking down various parts. The days of being able to go to a local electronics or radio repair shop, or even Radio Shack, and picking up a couple of capacitors or an opamp or whatever are long gone. While I still do have a local Radio Shack (how I don’t know, but I do), it only carries the most common types of components, and I already got those by the dozens.

I need a germanium diode for one radio circuit I’ve been tinkering with. Do I have one in those boxes on the shelf with hundreds and hundreds of diodes? Of course not! The one I need is the one I don’t have, of course. And, well, you generally can’t order just one. So I ended up spending something like $15 to buy 50 of the dopey things. It’s like the robot vacuum cleaner I repaired a few years ago. I needed one tiny, tiny screw that held on the side sweeper brush. That was all that was left to fix it, just attach that stupid brush. Do you think I could find that damned screw? No. No one locally had it. I checked hardware stores, Radio Shack, auto parts stores, no one had one even close. I started looking online and found I wasn’t the only one having trouble find it. I finally did get one, but in the end the only sources I found for it sold them only in lots of 500. So I ended up paying something like $25 to get a single screw, and I now have a whole bag full of 499 tiny, tiny screws sitting in a closet somewhere that I’ll never use for anything else.

The same thing is often true of electronic components. You can’t get just one or two, you have to buy in bulk sometimes, and you end up paying $25 or $40 for a whole box of parts just to get one $0.75 component. The end result is that while the cost of the individual parts for this project is pretty cheap, I’ve ended up spending a significant chunk of money on this already because I often can’t get just one or two, but have to order in bulk.

But enough with boring you with that. Once I get further along with the radio thing I’m going to split it off to its own web page so it doesn’t clutter up the blog.

Catching Up

It’s been a while since I talked about what has been going on in the ag industry. And I’ve probably been babbling far too much about radio and other non-farming/gardening stuff lately anyway, so let’s take a look at the ag sector. And I’ll slip some radio stuff in at the end that you can ignore if you want.

USMCA (NAFTA 2.0) Passes the House

As I mentioned in a previous post the trade deal to replace NAFTA is finally done and being considered by Congress.. The House has passed one version of it now, with some minor changes, but it has yet to be dealt with by the Senate. It’s not likely it will get passed this year yet (it’s already Dec 21 as I write this) and considering what is going on in D.C., it’s anyone’s guess as to when the Senate will be taking it up. Despite all of the hype coming out of Washington, right now the agreement looks like it is going to be at least as bad as the original NAFTA was. There are some improvements in the protection of workers in Mexico and environmental protections, but other than that, it doesn’t really make many changes. It’s basically NAFTA 1 with a bandaid on it. The claims that it will create jobs for tens of thousands of people and boost the US economy are completely unrealistic. This is another of those deals where the only people who benefit from it are the big corporations and a handful of special interests, but that’s par for the course with agreements like these. The original NAFTA wiped out tens of thousands of jobs, drove a lot of US manufacturing into Mexico, and disrupted the Mexican economy, especially in rural areas. This one probably won’t be as disruptive, but it isn’t going to help much. You can go look up the analysis of the treaty yourself, but right now it looks like it is going to have little or no positive effects on the US economy, and might even be worse for us than the original treaty was.

Trade War Update

It looks like things might finally be calming down a bit with China on the trade front. The administration has been claiming agreements have been made and that China is going to start buying massive amounts of soybeans and other agricultural products from the US. And, well, no, they aren’t. At least not the quantities that they’re claiming in D.C. Some of the numbers I’ve been seeing are simply ridiculous. Things are getting better, yes, but don’t look to China to start importing massive quantities of anything from us. There might be some buys, yes, but I suspect most of those are going to be little more than token purchases with few exceptions.

China lost half of it’s entire pig production because of African Swine Fever. It seems to have finally gotten the outbreak under control, but it’s going to be years before things are close to normal. Most of the soybeans China had been buying from the US was going to pig feed. So it’s unlikely it will be making massive soybean buys to feed a pig herd that doesn’t exist any more.

One thing that has improved hugely for US agriculture is China increasing the amount of pork and chicken. Because of ASF China’s lost half of its pig production, which has caused food prices to increase and there is a shortage of protein. So China has increased its buys of US pork and it recently granted permits and licensing to Tyson to sell US chicken in China. While this will certainly help the pork and chicken producers in the US, this is going to be a temporary bump that will only last until China can rebuild it’s pig herds.

African Swine Fever

ASF continues to be a major problem not only in China, which lost over half of its pigs, but also throughout South East Asia. Serious outbreaks are going on in Vietnam and the Philippines. In Sumatra it’s killed about 33,000 pigs. It’s also been found in North and South Korea, Mongolia, Cambodia, and Myanmar, as well in eastern Europe and parts of Africa. Some people feel it’s only a matter of time before it hits Australia despite it’s extremely strict regulations. For some reason people keep trying to smuggle pork from the ASF contaminated countries into other places. Smuggling is an ongoing problem in the US. We confiscate tons of sausages and other pork products from these countries that airline passengers try to smuggle through in their luggage, and even whole shiploads of pork from them. Australia confiscated 32 tons of pork products just from passengers and mailed packages alone in the last half year, half of which was contaminated with the virus. The virus itself hasn’t been seen in the U.S. yet, but it is in the wild pigs in Europe which is making everyone over there more than a little nervous. The US has a pretty good wild pig population, and while they aren’t a big issue (yet) here in Wisconsin, the DNR has issued an advisory to hunters with just about any kind of hunting license to shoot wild pigs, no “season”, no bag limit, just shoot ’em. They’re a huge problem in a lot of states, causing massive amounts of damage. Plus they carry a lot of diseases. If ASF ever gets into the wild pig herd here we’re going to be in trouble.

It was a Rough Year in the Midwest


That’s not one of my photos over there. MrsGF’s surgeries and other things kept me from getting out with the camera, but that is pretty much how it looked around here this year, especially at harvest time. Water everywhere. We officially had the wettest year ever. According to one report I read the longest dry spell we had without rain was three days. That sounded a bit odd to me so I started digging through some of the weather data and it isn’t far from the truth.

By anyone’s standards, it wasn’t a very good year for midwest farmers. Almost non-stop rain made it difficult to get anything done. There were delays in planting, delays in harvest, reduction in yields, all because of the wet weather. Around here there are still a lot of soybean and corn fields that haven’t been harvested at all because of the rain.

Corn prices never broke $4, although soybean prices weren’t horrible. But on top of relatively low corn prices, we had propane shortages which made getting the corn dried difficult and expensive.

The only bright spot was that milk prices finally came up to a fairly decent level for the first time in years. Class III milk is currently sitting at over $19 on the commodities market, but it doesn’t look like it will stay there much longer. January and February prices are down to $17 on the futures market.

Housing Issues

As if farmers didn’t have enough to worry about, finding employees continues to be a major problem both here in Wisconsin and in the ag business throughout the country. And as if that isn’t bad enough, an increasingly serious problem is where the heck are your employees going to live even if you do find some? This is a problem for almost every employer around here, not just farmers. Chances are good that employees aren’t going to be able to afford to live anywhere reasonably close to where they actually work. There is virtually zero housing in this town that would be affordable for the average low income worker. And it’s not going to be getting better any time soon. The town is putting in a new subdivision, and is quite proud of itself for doing so, but it isn’t going to actually help the average factory or farm worker around here because all of those new houses are going to be in the $180K to $250K range. What we really need are apartments that rent for about, oh, $500 – $600 a month, not houses that will have $1,500 to $2,000 a month mortgage payments.

What’s happening here is that we have a larger and larger population of people who live here, but don’t actually, well, live here, if that makes any sense. Yes, their houses are here, but their entire lives are up in the Fox Valley area about 20 miles away (the cluster of cities and towns up in the corridor that runs from Appleton, Neenah, Menash, and extends up to Green Bay). They can’t afford a house up in the Fox Valley any more, but they can afford one here. So while this may be their residence, their entire lives are centered around the Fox Valley. They buy groceries there, go to restaurants up there, meet their friends up there, do all their shopping up there. So they may live here, but they don’t actually live here. They don’t patronize local businesses, don’t send their kids to school here, don’t participate in local social events, and aren’t really part of the community.

So not only do we not have housing that is affordable by the average person bolting together snowblowers for $14 an hour, we have an increasing percentage of the population of the town who aren’t really engaged with the community at all. Their residences are here, yes, but they live their lives up in the Valley. They almost totally disengaged from the community they live in. And as a result we no longer have a clinic, no longer have a real grocery store, no longer have a pharmacy… Well, you get the idea.

It’s especially difficult for the immigrant community who make up the majority of labor in low paying jobs like farming, manufacturing (they like to talk about how well manufacturing pays – yeah, right. Starting wages at the snowblower place are about $12.95 an hour with no benefits and technically they don’t even work for the company, but for a “temp” agency.) They’re glad to get the jobs and the employers are glad to have them because they can’t find anyone else to do the work. But where are they going to live?

The Move

I’ve been talking for a while about moving all my electronics gear, the radio equipment, etc. down into a new shop/radio shack in the basement so MrsGF can take over our shared office so she’ll have room for her own projects. She enjoys sewing, making things, and would like to do quilting, but her existing workspace is a tiny, virtually unheated room upstairs, and there isn’t the room for it up there. Plus its cold in the winter up there. And even with her new knees I don’t want her to have to go up and down stairs a lot. So she’s going to be taking over the office area and I’m moving into the basement.

Now that she’s pretty much recovered from the 2nd knee replacement, I’ve started moving the “big stuff” down there. I have my primary computer down there now (I actually have space for the drawing tablet now!), the big TS-990, the antenna tuner, etc. Much to my surprise, I actually remembered how all of the cables hooked up and when I fired it all up everything actually worked! First time that’s ever happened.

I still need to do a lot of work down there. I have walls that still need to be painted. I still don’t have the electrical straightened out. I need to add at least two outlet boxes on the wall by the computer and radios, plus I need a 240V outlet there for the amplifier. Not sure why because I haven’t used the amp in years, but would be nice if I could.

I didn’t show it in the photos because it’s a huge mess at the moment, but behind me and to the left of that photo is my work bench which is covered with misc. parts, test equipment, tools, bits and pieces of RaspberryPi computers and accessories and breadboards where I’m testing radio circuits intended for the receiver I’m building. And that leads us to…

Update On The Great Radio Fiasco Project

Nice soldering technique she’s got there… (This image is somewhat infamous. Can you see why?)

I bet you thought I conveniently ‘forgot’ about that project because I am the seventh laziest person in the state (hey, I’ve gotten better, I used to be third). I haven’t, though. I’m still puttering along with this thing, even though I haven’t even fired up a soldering iron yet. Mostly I’ve been doing research. There’s no point in reinventing the wheel. Considering that radio has been around for like a gazillion years, someone, somewhere, must have already published plans for a radio receiver that I could steal (cough cough) borrow, right?

I had some basic criteria in mind when I started this. First it had to be as simple as possible, something that just about anyone who, unlike the young woman in the photo up there, knows how to use a soldering iron without suffering third degree burns can put together. Second, it had to use easily available parts, stuff the average person could get from Amazon or one of the parts suppliers like Mouser. Third, it had to be cheap. I want to encourage people to experiment and build stuff, not blow the family’s entire grocery budget for the month on exotic electronics parts. Fourth, it was going to use “old school”, so to speak, construction techniques and components. No printed circuit boards, no ICs, no SDRs, no surface mount devices, etc.

And fifth and possibly most important, it had to be a genuinely useful radio receiver that people could actually use. There are dozens, even hundreds of plans out there of various types for things like crystal radios and one transistor receivers and other nonsense that… Well, okay, so they might work, under absolutely ideal conditions, with a great deal of fiddling around, and if you live right next door to a 100,000 watt transmitter. But in the real world none of those actually work very well, if at all.

Anyway, I’m looking at various ideas and sketching some things out and doing some experimenting, and hopefully in a short (short? Ha!) time I’ll have something to show for all of this. Hopefully something that actually works. What’s been discouraging is that the schematics and projects I’ve found often contain such basic, fundamental mistakes that it makes me believe that the author never actually built the project himself and just, well, stole it, to be blunt, from someone else who also hadn’t actually built it either. I’ve been seeing things like electrolytic capacitors installed backwards, emitter and collector pins on transistors reversed, wrong pinouts shown on ICs like opamps and similar basic errors that should have been caught if anyone had bothered to actually look at the schematics.

And that’s it for now.

Old Radios And What To Do With Them

Because people know I like fiddling with radios, sometimes people give me old radios they don’t want or that don’t work in the hopes I can do something with them. I thought you might be interested in how your grandparents listened to radio, so take a look at this beast. I’ve had this thing sitting on the shelf for a long time now and finally decided to pull it out and deal with it because I need the space.

There is a technical term for radios like these: Junk

I have a term for radios like these – junk. It’s a shame, really. Once upon a time this was probably a nice little multi-band radio receiver. The rust on the chassis isn’t a big deal, that’s pretty common and can be dealt with, but this thing has some other, much more serious problems. It is unrepairable, but there are some useful parts I can salvage.

I looked all over this thing and I can’t find a manufacturer’s name or brand name. If I did some research I could probably find out what company made it originally, but there’s no real point because it isn’t worth the effort. There might have been a paper label that fell off long ago.

Or it’s entirely possible there never was a maker’s mark stamped on it. It wouldn’t be that uncommon. Like today, the name you see on the case of a piece of equipment isn’t necessarily the name of the company that actually made it. Back when this radio was made, big retailers like Sears and others would contract with manufacturers to produce equipment that the retailer would sell under their own brand name. Sometimes they’d buy the electronics from one company, buy the case from another, assemble it somewhere, slap their name on it and sell it as their own. It’s very common even today.

You’ll also note there is no outer case for this unit, either. That’s how it was when I got it. I find that fairly often today as well. Often the outer cases were made of cheap plywood with a thin veneer of nice wood on the outside to make it look fancy, and the cases would never last long. The plywood would begin to delaminate if it got damp, and they’d get damaged easily. Or if the case was in good shape, it’s fairly common for people to strip the old electronics out of it and throw them away and use the case as a decorative item or even build a modern radio into it.

Now if that radio up there looks complicated with the big transformer, variable capacitor, all the tubes and coils, well, you ain’t seen nothing yet. Wait until you see what’s underneath:

That – that mess up there, my friends, is what all radios looked like under the cover back in the day. When this radio was built, there were no transistors or solid state devices. This radio even predates printed circuit boards. Every single bit of this radio was built by hand. All of those components and wires were soldered in place by some poor schmuck who stood at a work station all day long doing nothing but soldering bits and nubbins and gubbins together.

Radios back then were very, very expensive, partly because they had to be all assembled by hand. It’s hard to tell how much this particular radio cost when it was new. Let’s say it was made in 1950, and it cost about $60 back then, which was a fairly common price for a decent, but not top of the line, multi-band receiver back then. That doesn’t sound like much until you take inflation into account. Accounting for inflation, that radio up there would sell for about $640 today. Ouch!

Another reason they were expensive was the sheer number of parts necessary, and, of course, these things:

Those are vacuum tubes. Now there is a wave of nostalgia going on about tubes, especially among stereo and audio aficionados who claim that sound amplifiers that use vacuum tubes sound “better” somehow, than those that use solid state devices and, well, it’s all BS, really. Vacuum tubes, to put it bluntly, suck. (Vacuum? Suck? Is there a pun in there somewhere? No, don’t go there…)

Sidenote: To give you an idea of how ridiculous this whole tube amplifier thing has gotten in the audio market, let me give you an example. An acquaintance of mine had a friend bring over a tube style stereo amplifier that had some problems. The four prominently displayed vacuum tubes on the top of the unit weren’t lighting up. But interestingly enough, it was still working as a stereo amplifier. Which it shouldn’t have been if the tubes were actually doing anything. Which they weren’t. The only connection to the tubes was a line to feed power to the filaments so they’d light up. None of the other pins were even connected. The tubes were being used for nothing but decorative lighting.

Vacuum tubes look really cool and retro and all that, but as actual electronic components they’re horrible. They suck up huge amounts of power, give off large amounts of heat, are physically large, often require massive transformers to provide high voltages, are expensive to make, and as soon as solid state devices began to be mass produced, radio manufacturers abandoned them as fast as they could redesign their equipment.

As I was looking this thing over, I found it had a rather serious problem. This:

If you look close at that photo up there, you’ll see what I mean, charred parts, melted wires – basically this thing was damn near on fire at one point. Probably some component failed, overheated, and started the insulation on the wiring on fire.

So what am I going to do with this thing? There are some parts I can salvage. The tube sockets are still good, and they’re hard to come by, so I’ll pull those out. The tubes themselves – I’ll keep ’em but I don’t know if they’re any good. They do make nice decorative items, though. Some of the big rotary switches may be salvageable as well. The actual electronic components aren’t worth even bothering with. A lot of them probably would still work within their original specifications, but without tearing them out of the circuits and testing them it’s impossible to tell, and frankly it isn’t worth the effort. Would you use a 50 or 60 year old resistor in a project you’re building today, even if a meter said it was within specification? I wouldn’t. But I am hoping I can salvage this:

These big air variable capacitors were (and still are) used for tuning, and they’re damned expensive if you have to buy them new. So I’m hoping that once I get this one out and cleaned up it might still be useful. It looks in pretty rough shape with some significant rust issues, but that seems to be limited to the nonessential parts. I can’t tell until I can pull it out and test it. I’m hoping it will work because a new one like this sells for about $50.

Is Repairing Old Radios Worth It?

Well, I’m not going to give you a whole lecture on antique electronics, but the answer to that question is … Well, to be perfectly honest, probably not unless it is something you personally enjoy.

My SX-43 isn’t worth much, maybe $100 – $150 if I wanted to sell it, but it is a really cool looking radio. And yes, it works quite well. This one has the advantage of receiving not just the ham bands, but also the AM and FM broadcast bands.

Financially speaking repairing and refurbishing old radios is almost never worth it. You aren’t going to get much money for them unless they are something rare or exotic. Often the people who buy antique radios aren’t so much interested in them working, they want them for decorative items. Considering the amount of time, effort, research, and the difficulty in finding some parts, you’ll be lucky if you break even if you try making money off restoring old radios. Fiddling with old radios is sort of a hobby of mine, but to be honest I don’t do it very often because I generally find it more rewarding to spend the time on other things.

Damn, I need to paint that wall and those shelves. Sheesh that looks like crap. Anyway, this is one of my other old receivers, an SX-96. I didn’t have to do anything to this one. The person who owned it before me completely refurbished it and it works probably better than it did when new. This one also isn’t really worth that much. I’ve seen people asking a lot of money for this model, but even in near perfect condition it isn’t worth more than about $125- $175

There are exceptions, of course. Old amateur radio equipment is one of them. Sometimes. It depends on the condition of the unit (external physical appearance is very important in this market, almost as important as it’s actual functionality), the desirability of the particular brand and model, and, of course, whether or not it works up to its original specifications. I’ve seen some old Collins, Hallicrafters, Hammerlund and the other “legendary” brands of amateur radio equipment being sold for eye-wateringly high prices. But it depends on the model, condition, etc. While at the same time other equipment of the same era, from a lesser known manufacturer, may sell for a fraction of what the popular models sell for, even if electronically speaking the off-brand was superior.

Replacing things like capacitors, resistors and other common components is fairly simple and cheap. You can almost always use easily available modern day equivalents. But things like vacuum tubes can be a serious issue. I don’t think anyone makes vacuum tubes except for a few Chinese and Russian companies, and they only make a very, very small variety of tubes, mostly for amplifiers. There are used ones out there, maybe, and some “new old stock” (NOS) laying around, but they’re getting harder and harder to find, and more expensive. If you can find them at all. Transformers can be a problem too.

Some of these old radios had some serious safety issues as well. I really doubt if some of these old radios would pass modern UL safety standards. So there are liability issues here as well. If a radio you repaired or restored causes a problem later, like someone gets an electric shock from it or a 60 year old component fails and starts a fire, could you be held liable and get sued?

I don’t want to discourage you from dabbling with repairing and restoring old electronics, but I do want you to know that you probably aren’t going to make any money at it, and if you do try to sell the equipment you repair, there could be legal issues as well. It can be a fun hobby but you need to be aware of the potential problems as well.

Roses of Winter and Holy Cow it is Bloody Cold Plus Some Radio Stuff

Apparently Mother Nature wasn’t satisfied with deluging us with snow a month early, now she’s trying to freeze us with temperatures we usually don’t see until well into January. It’s about 3 degrees (F) out there, with windchills down in the -10 range. Sheesh…

Meanwhile, MrsGF has this growing in the living room. Just took these photos the other day-

Yeah, roses. I’ve put up photos of this before, but I figured this plant would go dormant or something by now. But it just keeps right on blooming.

This thing started out as one of those goofy little teacup roses, a tiny plant in a cheap cup that they sell for a few bucks on Mother’s Day or Valentine’s Day. Think I paid all of $7 for it, oh, must be at least two or three years ago. And after we got sick of it sitting around the house MrsGF said what the heck, let’s put it in a big pot and see what happens and the dopey thing just kept growing and flowering. We were putting it in the basement, letting it go dormant over winter, but this year she thought she’d put it in the living room where it could get some light and keep watering it, and well, it apparently likes it there, and it’s been flowering on a regular basis all winter so far.

I asked her how she’s keeping it flowering and she swears she’s just watering it and isn’t doing anything else. Personally I figure witchcraft is involved.

The MagLoop Antenna

I talked about this antenna before, and I continue to be more than pleased with it. Since my dipole came down in the last snowstorm it’s been the main antenna for my TS-990, sitting on the floor behind me in the office. And it is doing ridiculously good.

This is putting 15 watts into an antenna sitting just behind me in my office this morning.

The Great Radio Fiasco Project

I mentioned this before, but let me summarize what I’m trying to do here. For reasons I won’t get into right now, I challenged myself to build, from scratch, a decent radio receiver, preferably shortwave. Emphasis on the word “decent” because I could throw together a few parts and end up with – well, with something that would receive, well, something that might be a radio signal, and pump it into a speaker and you’d hear some sound that might be interpreted as a radio transmission by someone with bad hearing. It could technically be called a radio receiver, but, well, let’s face it, it wouldn’t exactly be useful.

When I first conceived of this project I was like how hard can this be? In those WWII movies the Resistance throws together a radio out of bits of string, a piece of wire, an old cigar box and bits off a horse (don’t ask me what bits, I don’t know, ask them, they built the thing) and call up Churchill at Bomber Command and call in an air strike on Hitler’s outhouse. And the Good Ole Boys in amateur radio weep bitter tears of disappointment over the fact that modern day hams don’t build stuff any more like they did, when they’d throw together a 1,500 watt amplifier, transmitter and superhet receiver in an afternoon, out of parts they salvaged from old washing machines. And bits off a horse for all I know.

Here’s the thing, though – 95% of that (maybe even 98%) is pure BS. I’m sorry, but it just is.

The days of being able to salvage anything useful from discarded electronics are long gone. Modern SMD (surface mount devices) and robotic assembly methods make it virtually impossible to salvage anything useful from relatively modern equipment. And while you can buy discrete components like resistors, capacitors, etc. in the more common values, increasingly it is difficult to find a lot of stuff in anything but SMD form, and in quantities of 1,000 or more. I was trying to find what had once been a very common opamp the other day. It is still available. But if I want to get it from a US supplier I can only buy it in quantities of 1,000 or more, and in SMD format. If I want it in the traditional 6 pin IC form, and only want a few of them, it looks like I’m going to have to order it from China and it won’t get here until mid-March.

Nor are parts cheap. Oh, some are, true, but not the kind of stuff I’m looking for. A single variable capacitor I need for a project sells for $25. And I need two of them. So I’m going to have $50 stuck in that project before I even get started on it.

And then there’s the design of the equipment you want to build. If you were going to set out to build your own radio receiver, probably the first thing you’d do is fire up Google and look for something like “build your own radio” and find, well, hundreds and hundreds of hits that are utterly worthless, along with a few sites that might have actual plans to build something. Only most of those plans are for useless crystal radios and other nonsense. And the designs that do look useful are probably going to be wrong and no one is going to tell you how to fix it when you build it and it doesn’t work. In fact, most of the designs I saw out there were copies of stuff pulled out of old radio or electronics magazines from the 1960s or 70s that didn’t work in the first place.

(Sidenote: I’m convinced that the building plans in all those electronics magazines published in the 50s, 60s, 70s, etc. were never actually built by anyone because about six or eight months after the plans were published there’d be a “corrections” item pointing out that they forgot this part, or the wiring was wrong and if you’d actually build the thing it would have exploded, electrocuted your cat or something.)

So the question is, can I build a decent radio receiver from scratch? Probably. Will it work? Maybe. Can I do it for less than what it would cost to just go buy one? No way in hell. Will it work as good as even a cheap piece of junk commercial radio? Almost certainly not.

So why am I doing this? Uh, because I’m a stubborn old goat?

Cheap Amateur Radio. The FT-450D and holy s**t it’s cold! And some flowers and stuff

Okay, can we stop with this nonsense already? It’s only Nov 8, for pete’s sake! Normally we don’t get really cold weather and snow until mid to late December. Usually it’s in the mid 30s to low 40s this time of year and you can still go outside without freezing your bits off. Last night it was 10 degrees. Night before that it was 11 degrees. And snow? Really? A lot of years we’re lucky if we have snow by Christmas. In the last two weeks we’ve had a total of about 12 inches here. Most of that melted off, thank goodness, but now that the temperatures have plummeted it’s sticking around.

There’s so much we didn’t get done outside this fall. Between MrsGF’s knee surgery and everything else that’s been going on, I just didn’t have time to get everything done. I didn’t get some of the dahlias dug up, so those are probably going to be a total loss. Didn’t get any of the leaves raked because I was waiting for both the pear tree and the maple in the backyard to shed their leaves. Only they didn’t this year for some reason. It’s been a strange, strange autumn.

On the plus side, MrsGF’s Christmas cactus is in full bloom and it’s gorgeous. I know a lot of people who just can’t get these things to blossom no matter what they do, but MrsGF has a real knack with plants. I’m not sure what it is. I suspect she could take an old, half rotted twig, shove it in the ground, and in a few weeks it would turn into a healthy tree. This thing just keeps going and going. Some years it blooms twice.

And she has a rose bush in the living room this year, also in full blossom, in November. I don’t know how she does that, either. But it does make me grin like an idiot to have a rose in full bloom while it’s 10 degrees and snowy outside.

But I was really going to talk about amateur radio stuff when I started all of this so let’s get on with this…

Yaesu FT-450D hooked to the SCU-17 interface. It’s been in production for a while but it’s still one heck of a nice little radio for the money

Oh, before that, though, I thought I’d just throw this in even though it has nothing to do with the headline starting this off. This is what it looked like here on Oct 31 a little after 6 AM.

Last day of October in Wisconsin.

Now I know this is Wisconsin and the weather here is a bit, well, odd, but still, really? Ick.

Now, finally, the amateur radio stuff!

The Dilemma

Whenever I start talking to someone about amateur radio, whether they’re other amateur radio operators or people who know nothing at all about it, invariably the topic turns to cost, and it becomes clear immediately that a lot of people, including a lot of hams, think that amateur radio is way too expensive. A lot of people I know who would otherwise be interested in getting into the hobby think it’s so expensive they could never be able to afford it. And that simply isn’t true.

I can’t really blame them for thinking that because some of this equipment is indeed expensive. The top of the line transceivers that the manufacturers and owners love to show off can quickly push up into the $5,000+ range or more. The Kenwood TS-990 sells new for just under $8,000 and iCom makes one that sells for more than $12K, for heaven’s sake. Once you add in other things that you may think you need, if you believe the ads, like amplifiers, computers, morse code keys, etc. you can quickly end up sinking $15,000 or more in a top of the line set up.

But here’s something the manufacturers don’t want you to know:

You don’t need any of that high priced junk.

Seriously. You don’t. If you want to get on the air on the HF bands (shortwave) you don’t have to spend a fortune. That little Yaesu in that photo up there costs literally less than one tenth of what my TS-990 costs new, and to be perfectly honest, does everything you need. Granted, it doesn’t have all the bells and whistles the 990 has, doesn’t have the fancy displays and all that, but when it comes down to actually communicating, those bells and whistles aren’t really necessary and the 450 will do everything you need.

I was looking for a fairly full featured, small, full power (100 watts output), 12V powered transceiver to lug out to field day and special events or whenever I feel like it, in situations where the little low powered 818 wouldn’t do the job. I love that little 818, but let’s face it, with a maximum of 6 watts output (3 watts or less running digital), any kind of communications using it is going to depend more on luck than anything else. I ran across someone talking about the 450 and it sounded like a nice little transceiver so I looked into it more and decided it was just what I needed. It sells new for about $750 – $800 which is, as I said before, one tenth of the cost of my TS-990. You can find them used for about $500 or even less if you look around.

And for that price what you get is not some stripped down little radio, either. This thing has a lot of features, including a built in antenna tuner, decent filtering, good noise reduction features, etc. In fact, just about everything you might need in an HF transceiver is packed into this little unit. True, it doesn’t have many of the goodies my 990 has, but I have to admit that in real life I don’t use a lot of those goodies anyway. If this were the only transceiver I had, I would be more than satisfied with its capabilities.

But for me the main question was how well was it going to work using digital modes like PSK, FT8 and JS8Call because those are pretty much the only modes I use. And it turned out it deals with digital very, very well indeed. It took me all of 10 minutes to get it up and running with the SCU-17 you see sitting on top of it in that photo. It was just a matter of plugging in the cables, setting the baud rate in the menu, firing up the computer and setting things up in the software there, and I was on the air. Now granted I had only just fairly recently set up the Yaesu 818 with the same interface, computer and software, so I already had experience working with Yaesu equipment which certainly made it easier. But still, for me, getting a rig up and running on digital modes in under 10 minutes is a bit of a miracle, really. It took me days to get my TS-2000 working properly with digital modes when I first started this years ago.

It’s currently set up in the basement, hooked to the Titan Gap vertical antenna, and it’s been doing a very, very nice job. I’ve made contacts all over the place with it using JS8 and FT8, putting out about 40 watts.

Sidenote: The 450 may be capable of putting out 100 watts, but you never run full power in the digital modes on any transceiver because the power ratings of all transceivers are seriously misleading. Those maximum power ratings they give you are for single side band, which does not stress the transmitter in the radio. With SSB you’re actually averaging far less power output than advertised. Your signal may peak at 100 watts, but you’re actually averaging 50 – 60 watts or so because of how SSB works. Unlike SSB, most digital modes are considered to be 100% duty cycle. A general rule of thumb is when using digital, always dial your power levels back to less than 50% of the radio’s maximum. Sometimes the recommendations are as low as 25%. Otherwise you risk overheating the radio and damaging it.

Anyway, I’m very pleased with this little radio. I didn’t really expect much from it when I got it, and it has certainly exceeded all of my expectations. I’ve been having a lot of fun with it, and I’ve been using it more than my TS-990 of late.

Lets see, what else? Oh, yeah. This showed up courtsey of our friendly UPS delivery person the other day.

I picked up a Raspberry Pi 4 to play with to join the RPi 3s I’ve already been playing with. I have a specific goal for this one. There are Linux versions of FT8 and JS8Call that, I’m told, run just fine and dandy on the RPi. I’ll find out this winter as I experiment. My eventual goal is to put together a compact QRP digital system that is backpackable that I can take along when I’m out on the trails with the bicycle. I’d thought about configuring the Rpi as a tablet computer with just a touch screen and no keyboard. I’ve done that before with the Rpi3s I’ve had, but I think that might be a bit awkward, so I’m looking at compact keyboards and maybe a small trackball or touchpad for mouse control. We’ll see. This is still very much a work in progress.

I know, I know… The used Lenovo laptop I picked up was supposed to serve that role, and it does, but while it works just fine it is also big, heavy and clumsy to lug around. I can squeeze a RPi into a package not much bigger than a small tablet computer and a fraction of the weight. We’ll see how it goes.

And that’s about it for now. I’ve been boring you long enough with this.