Amateur Radio Stuff: What’s Going On

It’s been quite a while since I mentioned mentioned amateur radio, but that’s been because of a lack of time, not a lack of interest. Things back in the radio room are about to get — interesting, as they say. I’m facing a situation that every amateur radio operator does sooner or later, having to tear down everything.

IMG_0356

It’s even worse than this looks here. There are two more desks crammed into that room, an old drafting table, three book cases, a work table… It’s bad.

The radio room is, to put it bluntly, a mess. There is equipment piled everywhere, test gear shoved onto book cases or in drawers, amplifiers and radios laying on the floor, piles of printouts of manuals, booklets, stacks of mystery electronics in those anti-static bags, drawers full of connectors and parts, coax jumpers, meters, microphones, tools three full sized computers, three printers, all my Raspberry Pi stuff. There are cables and wires snaking along behind the desks, running into holes in the floor. The operating position is too cramped and awkward. The old drafting table my solid state amp is parked on it is too tall and too small, the desk the radios are on is in poor condition. The list goes on and on.

So everything is going to get torn down, moved out of the room. The room is going to get a good cleaning, etc. Then I start trying to put everything back together.

What sparked this is that MrsGF found a huge old teacher’s desk, made out of solid oak, for $50 at St. Vinnie’s. MrsGF already has one of these and I’d been looking for one for a while. The finish isn’t very good and it has it’s share of scratches and scars, but it is rock solid, lots of big drawers, and is long, wide and deep. That is going to get moved in, some of the old, particle board crap I’ve been using is going to go away before it collapses under the weight of the equipment, and then I can start trying to put everything back together again.

If I can remember how to do it… Meters, jumpers, wires, coax. You’d think I’d know enough to label all that stuff, right? I mean I have a label maker laying right there. But no, of course I didn’t. Sigh…

Anyway, Monday is the day when I start all of this. It’s taken me three years to accumulate this mess and put together that rat’s nest of wiring behind the desks, so this could take a while…

 

Getting Caught Up With Stuff

Water Tower Stuff

IMG_0568.jpg

They’re working on the water tower here in town. As someone who gets nervous standing on a step ladder, I can’t imagine how those guys up there do this job. I know they have safety equipment and all that, but still, hanging from a rope a hundred feet up like that? No way I could ever do something like that.

New Computer Stuff

IMG_0566The new computer is up and running beautifully. Very fast, slick computer, but the Nvidia 1050 TI card was damaged in shipment so I’ve been using the motherboard’s onboard Intel graphics. That works, until I do anything that demands any kind of high resolution, high frame rate video, and then everything falls apart real fast. I’ve tried playing Skyrim on it and while it works, the graphics are terrible and the only way to get the frame rate up to acceptable level is to turn the draw distance down so far I can’t even see enemies attacking me from just a couple of hundred feet away. Sigh. Second Life is even worse. Complex scenes with a large variety of different textures don’t render at all, probably because the graphics card doesn’t have enough memory to deal with all of it. The replacement video card is in, but it’s at my eldest son’s house, and he’s gone up north for the weekend, so it’s going to be Monday evening before I can really see what this thing can do.

ES was telling me he had trouble getting the 1050 card, and a quick scrounge around Amazon reinforced that. Every vendor I found on Amazon had disclaimers that the item was out of stock and wouldn’t be in stock for 3, 4 or more days. And that date kept shifting even farther into the future during the past week.

Gardening Stuff

The gardens have been doing pretty good this year, with the occasional glitch. I mentioned we have a fungus attacking the tomatoes because of the very damp summer we’ve had. We aren’t the only one. Almost everyone I’ve talked to has the same problem with their tomatoes this year. One group of pepper plants got pushed over when we had high winds roll through a few weeks ago, and they never recovered very well, alas. Some are doing okay, but others just barely survived. Not a bad thing because we planted way too many pepper plants this year, but still disappointing. Heard the other day that this summer is one of the wettest on record, which doesn’t surprise me at all.

Zenn and the art of electric cars

No, I didn’t misspell “zenn” up there. This has nothing to do with buddhism, but instead the Zenn is actually an electric car. This thing, to be specific…

Screen Shot 2017-07-01 at 6.40.43 AM.png

“Zenn” stands for “zero emissions no noise” and it was an attempt by a French company to produce an all electric car. And Eldest Son (ES) has one of these — these things.

It’s not really a car, it seems. Technically it’s an LSV, “Low Speed Vehicle”, a classification of vehicle that was created by the National Highway Transportation Safety Administration because they were bored or had too much to drink at lunch or something, because while LSV’s are allowed on the street, they are exempt from most of the safety standards real automobiles and trucks have to follow and these things are about as safe on the street as, oh, a tin foil and tar paper shack is in a tornado.

LSVs are restricted to a top speed of 25 mph, and can only legally travel on streets where the speed limit is 30 mph or slower. (I’m told there is a way to hack the computer on this thing to boost it’s speed up to a mind numbing 32 mph! Ooo!)

Now electric cars are getting a lot of press these days, things like the hybrids, all electrics like the sporty, high tech Tesla, the Leaf, etc. And they are fine vehicles, some of them are even outstanding vehicles.

The Zenn is not an outstanding vehicle. The body and chassis was made in France, shipped to Canada where, with the help of trained beavers, they shoveled a 30 hp electric motor into the thing. Well, okay, so they probably didn’t use trained beavers. But I do suspect moose were involved because Canadians enjoy messing with us down here.

The Zenn had a whopping 30 hp engine, it’s top speed was limited to 25 mph. You could squeeze 2 adults into it with some groceries. It ran on sealed lead acid batteries that gave a range of about 30 miles or so, less if you had a passenger or did something silly like, oh, turning on the lights or radio. Much much less if you did something even more silly like turn on the heater or air conditioning. (Note: the owner’s manual states that the car’s heater is not intended to actually, well, heat anything. It’s there only to defrost the windows.)

Still, for it’s intended purpose, which was basically driving five or eight miles to your job or running to the local grocery store to get your organic free range humanely harvested almond milk for your morning bowl of kelp flakes, it would work.

But there were a lot of problems with the Zenn. The biggest of which is that it was, well, pretty much crap.

I drove this thing yesterday, and after I stopped laughing because I couldn’t believe they actually allowed this thing on the road, I realized that it is a bloody horrible car, and the only thing that surprised me about it was that it took nine years for the company to go out of business.

The ride is — well, awful. Every expansion joint, every dip, every stone, every defect in the pavement, every pile of squirrel poo, is transmitted directly from the rock hard tires and even harder suspension directly to the base of your spine. It handles just like a golf cart, with uncertain steering, odd twitches and peculiar vibrations adding to the excitement of the experience.

And that whole “no noise” thing they talk about? Uh, well, no. Okay, standing on the sidewalk watching it go by you don’t hear anything. That’s because they’ve funneled all of the noise into the interior of the car. My Corvette with the racing exhaust and headers and the stereo cranked up is quieter inside than this thing.

Then there’s the brakes. As in what brakes… It has a regenerative braking system, they claim. When you step on the brake, it goes into regenerative mode, supposedly taking the energy of your forward momentum and magically turning it back into electricity that gets dumped into the battery and slowing you down. So you put your foot on the brake and — nothing happens. At all. Rapidly going into panic mode, you push harder, and harder and harder, and still nothing happens. Until finally you put your foot all the way to the floor and the real brakes kick in and the car comes to an abrupt halt and you find out why they put seat belts in it, to keep you from going through the windshield when you stop.

You laugh a lot when you drive this thing. You have to because it keeps you from screaming in terror.

Let’s look at some of the other high points of this car.

It’s plastic. All of it. Plastic body, plastic, well, everything. Even the glass isn’t really glass, it’s plastic. The windshield is glass, but the side windows and rear windows are plastic, and not very good plastic, either.

As noted above, the heater doesn’t actually heat. It’s just there to defrost the windows. And the air conditioner, well, it sort of works? Kinda? Maybe? If you’re willing to put up with your range dropping by at least half.

Charge time isn’t utterly horrible. They claim it will recharge the batteries to 80% in about 4 hours, with a full charge taking 8 hours.

Oh, they would have sold you a fast charger that would give you a full charge in an hour.

For $9,000.

Yeah, $9,000 for a battery charger…

So, you ask, what did they sell this thing for? Five, six grand, maybe?

Uh, no. Try (cough cough) $18,000.

With the optional quick charger, this sucker would set you back $27,000. For a car with a top speed of 25 mph and a range of 30 miles, which is ridiculously uncomfortable to ride in, terrifying to drive, and which would crumple like a piece of paper if it were even bumped by a real road vehicle because it meets virtually zero highway safety standards.

Gee, I wonder why the company shut down…

ES picked this thing up for next to nothing. It needed new batteries, work on the electronics and other things. I figure he’s got about $2,000 invested in this vehicle so it isn’t like he’s stuck a fortune into it, and he’s using it every day. He commutes to work with it every day. And I have to admit that it’s cheap. He’s crunched some numbers and figures that as far as energy usage is concerned, he’d have to have a car that got at least 140 mpg to match the cost of the energy he uses with the Zenn.

And there’s another benefit as well. The sheer terror of driving this thing in traffic is better for waking you up than an espresso I.V.

Antenna Adventure and Stuff

Screen Shot 2017-06-18 at 6.14.53 AM.png

Like most amateur radio operators I tend to accumulate a lot of stuff. I’ll find something and think ‘oh, that might be useful some day’ or ‘wow, that’s a good price I should get that because I’ll use it some day’. You know the kind of thing. The end result is I have more PL-259 connectors than I’ll ever use in my lifetime, spools of coax cable, rope, miscellaneous spools of wire, bits of this and that, oddball electronics, rather intimidating looking radios, test equipment and tools…

Making things worse is I’m fascinated with antennas and how radio waves propagate, so I have stuff used to make antennas, and even complete antenna systems that I’ve picked up along the way. Including the one in the photo, a Gap Titan DX vertical antenna that’s been laying in a box upstairs since I got it about three or more years ago.

It was intended to replace the Comet 250 vertical I’ve had since I first got my license. Now the Comet works. Sort of.  It’s dirt simple to put up, being little more than 21 foot long aluminum pole that bolts to a pipe hammered into the ground. But let’s face it, it isn’t really a very good antenna, especially at lower frequencies. It was intended to be a stop gap measure, something I could use to get on the air quickly and easily, with the intention of eventually replacing it with something else.

I eventually put up an OCFD that’s my primary antenna, but I kept the Comet up more for reasons of nostalgia than because it worked, which it pretty much didn’t. Oh, I made some contacts using it, but the intention was always to replace it with something better like the Gap Titan, or a vertical from DX Engineering that I picked up around the same time.

Eldest son showed up yesterday and said the Comet was coming down and we’re going to put that Gap Titan. Period. Okay… We worked out in the driveway during the hottest day of the year so far, gulping down water, sweating through our clothes, and finally got it put together. Mostly. It isn’t that difficult to assemble. The instructions are phrased a bit oddly, but if you take your time and pay attention to the diagrams it isn’t hard. And this is about as far as we got because now we are at the point where we have to put the counterpoise together, and that can’t really be done until it’s up because the counterpoise consists of four long aluminum rods about four feet long that are linked together with copper wire and goes around the bottom section of the antenna.

Then we realized that where we wanted to put it, where the Comet is now, isn’t going to actually work because we’d badly underestimated the size of the counterpoise. The Comet, being little more than a big stick with a can on the end containing the matching coils, takes up almost no room at all, and is bolted to a piece of pipe hammered into the ground. It has no counterpoise, no radials, nothing. Just a big stick, like I said. This, though, was going to require a space of about 8 feet across.

I wanted to keep it low to the ground despite the fact that would not help it’s performance. That would mean we wouldn’t have to guy it, it would be easy to take it down if necessary, and it would be easy to adjust. We considered putting it in different parts of the yard, and that would have worked, but that counterpoise would always be awkward to deal with and almost certainly someone would run a lawnmower or something into it. And we’d have to make a new feed line and bury it, and while I probably have about a thousand feet of coax laying around the house, none of it is rated for in-ground use so I’d have to get more, and we’d have to dig a trench and, well, this was starting to look like more work than we really wanted to get involved with.

And then there was the safety aspect of the whole thing. I rarely put more than 30 watts into the Comet, using it mostly for low power digital communications like PSK. Besides, the Comet can only handle about 200 watts anyway before the coils will melt down or something. The Gap, on the other hand is rated for a full 1,500 watts output, and I often use amplifiers putting out 600 – 1,500 watts when conditions warrant it. So getting it higher up would be advisable just in case some goof ball decided to grab the antenna just as I key a mic and dump 1,500 watts into the thing. You can get some nasty burns from RF at those frequencies and power levels.

So eldest son decided the best thing to do was go up. Keep it in the same location, but up above the roof of the garage where it would be out of the way and where it would probably work better anyway. But that meant we had to put up guy lines to keep it from falling over, so he’d have to go buy… No, you don’t, I told him, and rummaged around in my boxes and came up with a complete guying kit, including a few hundred feet of nonconductive line, tie downs and other goodies. And then he said well, it would be nice if we could put in a tip over mount so we can lower it down in case of storms and stuff so I should look into that. And, well, a trip to the famous “box o’ stuff” (well, actually many boxes) turned up a tip over mount originally intended for a DX Engineering antenna that would work… Sometimes it pays to hang onto all that stuff. So all we really had to buy was some sturdy pipe or something to get it about 10 feet up so it would clear the garage roof, and he went off with the truck in search of that.

Now I have absolutely no idea how he’s planning on doing this. As MrsGF pointed out, he’s the genius in the family and it’s best to just leave him alone and let him do it because he’s generally right. So we’ll see what’ll happen.

If we get a chance to actually do it. It looks like more storms are on the way, and working on antennas with thunder storms in the area is generally considered a bad thing to do.

Changes… And New Toy… And My Mind Wanders. Again

IMG_0167This is my new toy, a Raspberry Pi 3. If you want to experiment with building evil robotic minions to help you to take over the world, this is a good place to start. It has a 64 bit, quad core ARM A53 processor running at 1.2 GHZ, a gig of RAM, 4 USB ports, an HDMI port, LAN port, WiFi, reasonably good graphics and sound, and runs a version of LINUX. It can connect to the outside world to enable the computer to hook up to sensors, relays and controllers to make evil robots to allow you to take over the world, control devices, record data from sensors and all sorts of fun things.

And it costs a whopping $35. Less than what it would cost me to get a good meal at that fancy restaurant a couple of blocks from here. Hell, less than what just a bottle of wine would cost over there.

Now this, on the other hand… Well, not on the other hand because you couldn’t pick it up with one hand, but you get the idea. This is the first computer I ever owned. It is a Ohio Scientific C2-8P, and if you’ve 2ecd9544af30be5a0d4d8f7926065484never heard of it, I don’t blame you. Ohio Scientific is just one of many, many computer makers that tried to get into the home and small business market back in the late 1970s through the mid 1980s, and failed. It did better than a lot of them did, but eventually it failed, along with Atari, Commodore, Apricot, Coleco, Exidy, Franklin, Panasonic, Radio Shack/Tandy, Sinclair, Texas Instruments… Well, the list goes on and on.

Mine wasn’t even as good as the one in the photo over there. Mine was an early version that didn’t have the fancy paint and logo on the front. And it was nasty. It was about the size of a microwave oven, packed solid with circuit boards the size of a sheet of paper, each of those stuffed with chips of various types, all hooked together with miles of ribbon cables and wiring.

Mine was kind of odd. Kind of? Ha! It was seriously odd. I’d never seen anything like it before or since. I suspect it was an experimental unit that had been heavily modified. According to the photocopied documentation I got with it, it could support three different processors, a 6502, 6800 or 8080. Or maybe a Z80. Don’t remember. It was a long time ago. They were selected via a rotary switch on the back???? Really? Seriously? I never knew for sure. There was only one CPU board in it when I got it. There was a big rotary switch on the back but it wasn’t wired to anything. I think they had some kind of scheme where the switch would select one of 3 CPU boards connected to the backplane, but since there was only one CPU board and the switching system wasn’t connected I have no idea what the hell they were trying to do.

Why 3 different CPUs? I suspect they intended to use it as some kind of development and/or testing system for different types peripherals. The documentation I had was originally typewritten, with hand written notes in the margins, and then had been photocopied. It was interesting, that’s for sure. Large parts of the machine were wire wrapped and hand soldered so someone had been in there fiddling around. A lot.

It came with a whopping 4K of RAM. I spent hours hand soldering chips to the memory board to bring it up to 8K. The company I bought it from found an extra 8K RAM board for it and gave that to me. It was, of course, unpopulated, so I spent many more hours hand soldering RAM chips to the extra board.

Data storage was on a cassette tape. It read/wrote data to a cassette tape at a whopping 300 baud using the Kansas City Standard (if you know what that is, you really, really need to get out more and get a life). That’s 300 bits per second… Oooo, the excitement! To load the editor/assembler program so I could program in assembly language took 20 minutes. Video was black and white, text only, going to an old Panasonic B&W TV set that I had to re-wire to handle the video input from the computer. The company I bought it from offered to give me a “real deal” on the matching 8 inch floppy drive system for it. I passed because I could have bought a pretty good car for what they wanted for the thing.

What did it all cost? By the time I got it up and working (sort of) I probably had well over a grand invested in the thing.

In a way it was completely worthless, that computer. I never actually did anything genuinely useful with it. But on the other hand, if you count the intangibles it was worth every penny because I taught myself programming in BASIC and assembly language on that beastie. I learned how to solder IC chips to circuit boards. I learned how to hunt down failed components (capacitors failed all over the place on that thing for some reason). I learned why storing data on cassette tape is very, very nasty. Trying to get that thing running and keeping it running taught me more about the technology than all the computer science classes I took in college.

And I learned how to make my own Faraday cage because it put out so much RFI it screwed up every TV and AM radio in the area when I turned it on and had build one around it just so I could use it.

Now, where was I? How did I get off on this? Sheesh, I was going to talk about changes in technology, make pithy remarks about how almost no one back then foresaw how computer technology would evolve, morph into what it is today where computers are literally everywhere, in every aspect of our lives.

Instead I end up doing this ramble down memory lane babbling about a relatively minor player in the early computer market… Sigh.

Damn, I hated that computer. Wish I still had it.

 

 

Amateur Radio Tools and Test Equipment Part Three: Test Equipment

(Note: This rather quickly turned into an article about stuff you don’t need and why you don’t need it, rather than about stuff you do need. So it goes…)

Now there is a whole slew of test equipment some people claim you need. And you go out and spend your hard earned money on it and find that well, no, you didn’t actually need it. The fact of the matter is that unless you’re really into electronics development work, need to diagnose and repair some rather expensive and complicated equipment, you don’t really need much more than a volt/ohm meter and a couple of other items. And this is coming from someone who admits he has a — a problem, shall we say, when it comes to tools and test equipment. Basically I see a new tool or piece of test equipment my eyes glaze over, I start to shiver uncontrollably, instinctively reach for my credit card…

What do you really need? Well, at the top of the list is a decent volt/ohm meter of some sort. Usually abbreviated as VOM or DVM for the digital versions, or multi-meters. It’s pretty much an essential tool. But which one do you get? They come in all kinds of shapes and sizes, all kinds of different options, and prices that range from little more than pocket change to “OMG who the hell can afford that”.

You don’t need to spend a fortune on a VOM, but you don’t want to get one of the bargain basement varieties out of the $2 bin at the lumber yard either. For the average electronics hobbyist you can get a perfectly good VOM for around $30 – $40. I wouldn’t spend more than $150 or so on one for one unless I was, oh, repairing equipment on a professional basis or something like that.

Which one do you get? Well, if you’re me — all of them… Okay, that’s an exaggeration butScreen Shot 2017-03-18 at 7.43.09 AM
the fact is that I have about a dozen of the dopey things laying around, from small pocket models smaller than a deck of cards to bench top models and even rack mounted units. Including one of these over there on the right. I don’t think I have it any more and it never worked in the first place and I have no idea where the thing even came from because I don’t remember buying it. (I think people break into my house not to take things, but to leave me things so they don’t have to pay recycling fees…) And it wasn’t even a VOM come to think of it but some kind of frequency counter or something…

Never mind, let’s get on with this.

The kind you do need is your basic VOM, something like one of these over there on the left. IMG_0020The Fluke is the one that lives on my workbench and that I use the most often these days. The Radio Shack model… Well, heck, I probably have a dozen RS meters because when I was a technician out in the field things happened… Oh, brother, did things happen. And RS stores were just about everywhere and the stuff was cheap and reasonably good.

Anyway, something like that Fluke will set you back about $150. The RS model is a lot less. Think I paid about $40 for that one something like 15 years ago. It seems about as accurate and useful as the Fluke, so why did I buy the Fluke? Well, it’s — it’s so shiny

They both do pretty much the same things for the most part. Both have replaceable probes/leads. And yes, you need that. You do not want a meter that has the leads wired directly into the meter. Accidents happen – melted probes, broken, frayed wires, melted wires… Stuff happens. (You did remember to unplug the equipment and discharge those high voltage caps, right? Hmm?)

Another piece of test gear that is pretty much essential for the amateur radio operator is something called a dummy load. No, this is not a truckload of ventriloquists dummies. Nor is it a load of politicians. It’s a sort of, oh, let’s call it a radio black hole.

When you’re testing and/or working on a transmitter, you have to actually transmit with it. And you need to hook the output of your transmitter up to something that can suck up the power or it can either damage your transmitter or send potentially illegal radio transmissions out into the air and enormously irritating the FCC. Or your neighbor who suddenly finds all of the electronics in his/her house going wonky.

A dummy load is really just a big, heavy duty resistor or resistors that absorb the power being dumped out by your transmitter and converting it to heat. Nothing magic, just basic physics. You can probably build your own if you like. There are tons of examples out there. Or you can buy one. Ones that can handle under 100 watts of power are out there for well under $100, some down in the $30 range.

If you fiddle around with amplifiers like I do, you’re going to need something that can handle a lot more power because those big HF amplifiers can potentially put out well over 1,500 watts. One of the cheapest methods of dealing with it was the so-called “cantenna” which was basically a paint can with a big honking (that’s a technical term, honking, you know, like ginormous, or widget, or doodad) resistor sitting in a gallon of transformer oil used to cool it. They’re still on the market and they do work pretty well. You can pick them up for under $100.

If you don’t like messing around with all that oil and stuff, you can get fan cooled dummy IMG_0027loads that can handle higher power, but you’ll pay for it. Something like the Palstar over on the right will set you back around $375 or so. A bit less if you can find one used. I think MFJ makes one as well.

Which one do you need? Well, as much as I like the DL2K I’m the first to admit that you don’t need one unless you do a lot of fiddling around with high power amplifiers. At the time I picked this one up I was doing just that and it was very, very useful. But most people don’t mess around with amplifiers that often and you can get away with something a hell of a lot cheaper. Even if you do use amplifiers, one of the “cantenna” type dummy loads will probably work just fine for you at a quarter of the cost.

That’s the thing with some of this equipment. It’s very handy to have around, and IMG_0017sometimes you absolutely have to have it. But you’re going to use it so rarely that you wonder if it’s worth the cost. It’s like this thing, my antenna analyzer over there on the left. It is a genuinely useful gadget for analyzing the performance of antennas, feed lines, helping determine antenna lengths for specific frequencies, etc. but how often do you really need one?

They aren’t exactly cheap. A good one will set you back about $300 or more. And while they are very useful indeed, I hesitate to recommend you buy one because chances are good you don’t really need one. I picked it up because I love messing around with antennas. I have three antennas in actual use at the moment and have about five more I want to put together and set up or am planning on building and experimenting with once the weather gets a bit better. So for someone like me having one of these makes sense. But even I don’t use it all that often. In fact, as often as not I lend the thing to other amateur radio operators who are setting up antennas so they don’t have to go to the expense of buying something they’re only going to use once or twice.

That brings me to this thing, another piece of test equipment you probably don’t need but really, really want, the oscilloscope. Look, I know you want one. You really, really do. It has all those fun IMG_0019buttons and knobs and that fancy display and it’s just so cool. But do you need one? Probably not. I’ve had this thing for like three years now. How often have I actually used it for anything serious? Twice. Twice in three years. Sheesh…

This isn’t the first ‘scope I’ve owned, either. I’ve had various “old school” CRT based models of various vintages over the years, and to be perfectly honest, I’ve almost never used any of them. They look really, really cool sitting there on the workbench. Sometimes I’ll turn it on and smile at it, pet it, scratch it behind the ears, tell it that it’s a good ‘scope and give it a treat, then turn it off and go back to whatever I was doing. But actually use it? But owning an oscilloscope seems to be, oh, like some sort of right of passage for a lot of amateur radio people. Having one of these sitting on the workbench means you’re “serious” about it, not just fiddling around.

That’s the problem with a lot of the test gear out there. It’s often something you’ll only use once or twice, and that’s it. So is it worth investing hundreds of dollars in something you’re going to use once in ten years?

Unless you’re really into circuit design, equipment repair, experimentation, development work, etc. most of the fancy test gear you see out there isn’t going to be very useful.

How often are you going to need a spectrum analyzer? Probably never unless you’re repairing a lot of equipment. Or a function generator? I’ve got one of those as well. I’ve never used it. At least that one didn’t cost me a fortune because I built it myself.

Now I’m not saying you shouldn’t buy the stuff, but make sure you really need it and can afford it before you pull out the credit card. You might also be able to find a super cheap version of the test equipment that isn’t very sophisticated or even isn’t very good, like some of the cheap oscilloscope kits out there, but which will work well enough for what you need it for.

You can often borrow the stuff from a local amateur radio or electronics hobbyist if you can find one. We’re typically friendly people and once we know you aren’t going to go running off into the night and selling off our stuff on eBay or something, we’re generally more than willing to lend you stuff.

 

Amateur Radio Tools & Test Equipment Part Two: Soldering and Power

Ha! You thought I was going to get bored with this and there wouldn’t be a part two, didn’t you? Well there is a part two, so let’s get on with this, shall we?

Screen Shot 2017-03-11 at 12.05.02 PM

Can you say “horrible mess” boys and girls?

Almost any kind of fiddling around with electronics of any sort is going to require soldering sooner or later. Soldering is the joining of two or more bits of metal together via the application of heat and solder, a metal which has a lower melting point than the two bits of metal being joined. The solder serves two purposes: First it physically joins the two parts together. Second, it provides electrical continuity, a path for electricity to flow. It requires the use of a heat source, i.e. a soldering iron or pencil, and the solder itself.

Solder is usually an alloy of lead and other metals, or one of the newer lead free solders that generally include antimony, copper, silver, zinc and/or other metals to replace the lead. Silver solder, a mixture of silver and copper, is widely used in reflow and wave soldering, and often for hand soldering as well. Because of the health issues related to lead, many manufacturers are moving to the use of lead free solder. Lead based solder is still widely available and is still legal, but I would not be surprised if it is phased out entirely in the fairly near future.(1)

Now I’m not going to launch into a tutorial on how to solder. There are hundreds of the things floating around out there on electronics web sites, YouTube, etc. Some of them actually know what they’re talking about. I’m going to talk about the equipment you need to actually do it. And the first item is a soldering iron.

A soldering iron or soldering gun or soldering pencil is the essential tool. It is the device

Screen Shot 2017-03-11 at 12.05.56 PM

I’d love to see someone try to solder SMD chips with this puppy.

that actually generates the heat that is required to melt the solder. Oh, look, there’s a soldering iron over there on the right. The big can thing is, by the way, a blow torch. My, isn’t it a handsome thing, all 19th century looking and steampunky and all that.

Well it is a soldering iron, but not exactly the kind we’re interested in, now is it? I think we’re interested in something a bit more modern and which won’t burn down the house if you actually try using it the way this one could. So let’s look at this one instead, shall we?

IMG_0040

The very first soldering kit I bought was essentially this exact same set from Radio Shack back around 1970

This is a cheap Radio Shack soldering pencil from a hobbyist soldering kit that I picked up for… Well, I forget what I paid for it but it was under $30. And with Radio Shack going bankrupt (yes, again) if there are any RS stores in your area you might want to run out and see what kind of deals you can pick up. It came with a clip on heat sink, needle nose pliers, side cutters and a few other goodies. RS has been selling this same basic kit for something like 40 years. The soldering pencil is cheaply made and often doesn’t last very long, but if you’re just looking for a cheap way to solder a few joints this will get the job done.

If you’re going to do any kind of serious electronics work, though, you’re going to need something like this over here on the right. That’s my Weller variable temperature soldering station with a digital readout for the temperature. It is a lot more money than the RS special, going for around $140 or so,

IMG_0018

The Weller has been going strong for 5 years now

but I’ve had this one for about 5 years now and it’s still going strong and works quite well.

Two things you want to look for – a variety of different tips for different soldering jobs, and variable temperature. You need different tips for different types of soldering, from needle sharp tips for small components to spade type tips for desoldering. And the temperature control is, I feel anyway, essential. Different formulas of solder have different melting points. You want it hot enough to adequately melt the solder while at the same time not too hot to avoid damaging the equipment you’re working on.

A couple of other things before we move on here. You see a couple of other items in that photo, a thing that looks like a rather odd syringe, and a golden ball full of what looks like hair.

The ball thing is actually a tip cleaner. The ball holds steel wool. The hot tip is rammed into the steel wool, cleaning it of accumulated solder, flux, etc. Some kind of tip cleaner is essential. A dirty soldering tip does not conduct heat well, and heat is what it’s all about. The cleaner the tip, the better.

The blue and chrome gadget is what is generally called a solder sucker, a tool for removing rather than applying solder.

Screen Shot 2017-03-11 at 12.10.11 PM

Desoldering wick or braid

I find that I’m often using my soldering equipment for removing solder rather than applying it. You’ll find you have to desolder components from a circuit board before you can make a repair or modification. The only way to do that is by melting the existing solder and removing it somehow.

The sucker works by applying a vacuum which sucks up the solder. There are different types. Some use rubber squeeze balls, some use a piston powered pump like this one, others, much more expensive, have electric vacuum pumps. The other way is to use solder wick or braid. This is a metal braid, usually coated with some kind of flux to attract liquid solder better. The braid is pushed down onto the cold solder with the tip of the soldering iron when then heats everything up and the braid absorbs the liquified solder.

If you do a lot of desoldering, you might want to get an actual desoldering system. But for most of us good old desoldering wick or a solder sucker is good enough.

Let’s move on to one final item in this discussion about soldering, and that’s this puppy, IMG_0030the ubiquitous soldering gun. These things are designed to apply a lot of heat to large objects, quickly, and as such they are virtually useless for most electronic soldering jobs. They’re too big, too awkward, apply too much heat. Using one of these on a circuit board is sort of like using a 12 gauge shotgun to hunt mice. You can do it, sure, but there isn’t going to be anything left of your quarry when you’re done.

But there are times you need something like this. Especially if you’re trying to solder PL-259 connectors. Your average soldering pencil just doesn’t supply enough heat quickly enough. By the time you’ve heated the connector up enough to solder it, you’ll discover you’ve also melted about two inches of the insulation on the coax as well.

Now there are other things I haven’t touched on that are related to soldering, but which I’m not going to get into. Like SMD. SMD stands for Surface Mount Device. Discrete components (even entire IC chips) are now often mounted not via good old fashioned through-hole connections, but on solder pads on the surface of the board. While this is great for robotic assembly systems, it’s not good for people who want to try to repair the blasted things or have to otherwise work with SMD technology. Dealing with resistors, capacitors, diodes and other components that are about the size of a quarter of a grain of rice and mounted on the surface of a board on solder pads, well, it isn’t exactly a great deal of fun. Working with SMD can be done, but it takes practice, a steady hand, and a pretty good magnifying lens, preferably with a built in light.

Then there is the question of fumes. There is no denying the fact that some of the fumes given off by solders and fluxes when heated are not healthy for you to breathe. Even some of the plastics that the components are made from can give off fumes that are toxic. If you’re just soldering a joint or two it isn’t bad, but if you’re doing a lot of it, you’re going to want to look into a good venting system or a fume extraction device of some sort.

Now let’s look at power.

Power. As in electrical power of course. You need it.

Screen Shot 2017-03-12 at 8.14.10 AM

Very soon your house wiring will look like this

Now with most devices you just plug the thing into a wall socket and turn it on. But sometimes things are that simple. Once you get into amateur radio and/or electronics, you will quickly find out that different devices have different power requirements. Odd ball voltages, weird batteries that no one carries, and odd power connector plugs. Sometimes very odd power plugs.

Now a lot of amateur radio equipment runs on 12 volt DC. My Kenwood TS-2000 transceiver requires 12V, my antenna tuner runs on 12V, my big dummy load runs on 12V.

And to complicate things a bit more, 12V doesn’t actually mean 12V. For reasons I won’t get into here (you do have that google thing, right?) most 12V devices actually want around 14V, and if you try to feed them less than that some very strange things can happen.

Now if you do have 12V equipment you want to run, what do you do? Go out and get

IMG_0026

Typical 12V power supply on a very dirty work bench

yourself a car battery or something? Well, you could if you really wanted to. It would work. For a while. But you’re going to need a 12V power supply similar to this one over on the left. This particular one has a handy Amp meter that tells you how many amps the device(s) connected to it are drawing, and a meter showing the actual voltage the power supply is producing. This particular power supply allows you to adjust the voltage up to about 16V if you need it for some reason.

You can get power supplies with all kinds of bells and whistles on them, but you don’t really need most of them. You can get switching power supplies, transformer power supplies… Generally the switching power supplies are a lot lighter, but they have more electronics in them that can screw up. Transformer based power supplies generally work well, but can use significantly more electricity than switching supplies. Which one you choose depends on what your preferences are, budget, etc. Before you buy one go check out the reviews on eham.net or other sources first.

Once you do get a power supply, the question of how to get that power to the equipment that needs it comes up. Most 12V power supplies only have one or two supply points on them, and generally they aren’t the most convenient things in the world to use. You basically shove a couple of wires into holes and have to tighten down screws to make the actual connection. It’s awkward, and if you have more than one piece of equipment and only one power supply, you’re going to wear those screws out pretty fast switching things around. So I use one of these for 12V power.IMG_0028

This particular unit is a Rig Runner from West Mountain Radio. It’s basically just a power strip, but for 12V rather than 120V. The main line from the 12V power supply is plugged into the outlets on the far left, and the other connectors then distribute that power. Each of the outlets is fused for various amperage requirements. If you’ve never seen that kind of connector before, don’t worry, I’ll come to them in a minute.

Now power strips like this are available from a variety of companies. MFJ makes them, as does West Mountain. Or you can make your own easily enough.

Now let’s talk about those connectors. If you haven’t seen those before, they’re called IMG_0029Anderson Power Pole connectors, and they’ve become something of a standard method of connecting power to devices in the amateur radio community. ARES has declare them to be the universal power connector out in the EmCom world, and I have to admit they make life a hell of a lot easier. No more stripping wires, fiddling with electrical tape and all that nonsense. Just install them on the ends of your power leads and you’re good to go.

The drawback is that while they’re simple to use, they do require a special crimping tool to install them on the ends of your wires. A good one like the one in the photo there can set you back a hefty chunk of money.

But if you’ve ever had to fiddle around in the cold under the dash of a car trying to strip insulation off wires, wrap wires with electrical tape, well, that kind of thing gets old fast.

Let’s talk about 240 volt for a moment. The only reason you might need 240V in your shack is if you’re going to be running a 1,500 watt output amplifier. If you want to fire up a big old tube amp and pump enough energy into your antenna to melt the vinyl siding on the neighbor’s house, hey, who am I to tell you not to? But do you really need it? No.

If you really need to put out more power, a 500 – 600 watt amplifier will generally run pretty well on 120V. A lot of the high output amps can be rewired to run on 120v, although at reduced output. So no, you don’t really need 240 volt in your shack.

 


  1. I am not going to get involved in the heated argument of lead versus lead-free solder. While many claim that lead-free solder works just as well, is just as reliable, and is just as easy to use as the lead type, there are probably an equal number of people who will claim the lead-free solders are utter garbage. I switched to using lead-free solder for plumbing something like thirty years ago and I’ve never had any problems with it. While I still use lead based solder for electronics, that is due to the fact I have about fifty spools of the stuff laying around the house.